login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that 2*k^2 - 4 is a square.
15

%I #82 Aug 23 2022 09:52:04

%S 2,10,58,338,1970,11482,66922,390050,2273378,13250218,77227930,

%T 450117362,2623476242,15290740090,89120964298,519435045698,

%U 3027489309890,17645500813642,102845515571962,599427592618130,3493720040136818,20362892648202778,118683635849079850

%N Numbers k such that 2*k^2 - 4 is a square.

%C Lim_{n->infinity} a(n)/a(n-1) = 3 + 2*sqrt(2).

%C Also gives solutions to the equation x^2-2 = floor(x*r*floor(x/r)) where r=sqrt(2). - _Benoit Cloitre_, Feb 14 2004

%C The upper intermediate convergents to 2^(1/2) beginning with 10/7, 58/41, 338/239, 1970/1393 form a strictly decreasing sequence; essentially, numerators = A075870, denominators = A002315. - _Clark Kimberling_, Aug 27 2008

%C Numbers n such that sqrt(floor(n^2/2 - 1)) is an integer. The integer square roots are given by A002315. - _Richard R. Forberg_, Aug 01 2013

%C a(n) are the integer square roots of m^2 + (m+2)^2. The values of m are given by A065113 (except for m = 0). The values of this expression are given by A165518. - _Richard R. Forberg_, Aug 15 2013

%C Values of x (or y) in the solutions to x^2 - 6*x*y + y^2 + 16 = 0. - _Colin Barker_, Feb 04 2014

%C Also integers k such that k^2 is equal to the sum of four consecutive triangular numbers. - _Colin Barker_, Dec 20 2014

%C Equivalently, numbers x such that (x-1)*x/2 + x*(x+1)/2 = (y-1)^2 + (y+1)^2. y-values are listed in A002315. Example: for x=58 and y=41, 57*58/2 + 58*59/2 = 40^2 + 42^2. - _Bruno Berselli_, Mar 19 2018

%D A. H. Beiler, "The Pellian", ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.

%D L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.

%D Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.

%D P.-F. Teilhet, Reply to Query 2094, L'Intermédiaire des Mathématiciens, 10 (1903), 235-238. - _N. J. A. Sloane_, Mar 03 2022

%H Colin Barker, <a href="/A075870/b075870.txt">Table of n, a(n) for n = 1..1000</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H J. J. O'Connor and E. F. Robertson, <a href="http://www-gap.dcs.st-and.ac.uk/~history/HistTopics/Pell.html">Pell's Equation</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PellEquation.html">Pell Equation.</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,-1).

%F a(n) = 2 * A001653(n).

%F a(n) = (1/sqrt(2))*((1+sqrt(2))^(2*n-1) - (1-sqrt(2))^(2*n-1)) = 6*a(n-1) - a(n-2).

%F G.f.: 2*x*(1-x)/(1-6*x+x^2). - _Philippe Deléham_, Nov 17 2008

%F a(n) = round(((2+sqrt(2))*(3+2*sqrt(2))^(n-1))/2). - _Paul Weisenhorn_, Jun 11 2020

%F From _Peter Bala_, Aug 21 2022: (Start)

%F a(n) = 2*Pell(2*n-1).

%F 1/a(n) - 1/a(n+1) = 1/(Pell(2*n) + 1/Pell(2*n)), where Pell(n) = A000129(n). (End)

%e From _Muniru A Asiru_, Mar 19 2018: (Start)

%e For k=2, 2*2^2 - 4 = 8 - 4 = 4 = 2^2.

%e For k=10, 2*10^2 - 4 = 200 - 4 = 196 = 14^2.

%e For k=58, 2*58^2 - 4 = 6728 - 4 = 6724 = 82^2.

%e ... (End)

%p a:= proc(n) option remember: if n = 1 then 2 elif n = 2 then 10 elif n >= 3 then 6*procname(n-1) - procname(n-2) fi; end: seq(a(n), n = 0..25); # _Muniru A Asiru_, Mar 19 2018

%t LinearRecurrence[{6,-1},{2,10},30] (* _Harvey P. Dale_, Sep 27 2018 *)

%o (PARI) Vec(2*x*(1-x)/(1-6*x+x^2) + O(x^100)) \\ _Colin Barker_, Dec 20 2014

%o (GAP) a:=[2,10];; for n in [3..25] do a[n]:=6*a[n-1]-a[n-2]; od; a; # _Muniru A Asiru_, Mar 19 2018

%Y Cf. A000129, A000217, A000290, A002315.

%Y Twice A001653.

%K nonn,easy

%O 1,1

%A _Gregory V. Richardson_, Oct 16 2002

%E More terms from _Colin Barker_, Dec 20 2014