login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075825
a(0) = 1, a(1) = 2; for n>0, a(2n) = |a(n)-a(n-1)|, a(2n+1) = a(n)+a(n-1).
3
1, 2, 1, 3, 1, 3, 2, 4, 2, 4, 2, 4, 1, 5, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 3, 5, 4, 6, 3, 7, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 3, 9, 2, 8, 1, 9, 2, 10, 3, 9, 4, 10, 3, 11, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4
OFFSET
0,2
COMMENTS
For 2*2^k-2 <= n <= 3*2^k-1, a(n) alternates: 2^floor(k/2) if n is even, A029744(k+2) if n is odd. - Robert Israel, Nov 08 2016
LINKS
MAPLE
A[0]:= 1: A[1]:= 2:
for n from 1 to 100 do
A[2*n]:= abs(A[n]-A[n-1]);
A[2*n+1]:= A[n]+A[n-1];
od:
seq(A[n], n=0..201); # Robert Israel, Nov 08 2016
MATHEMATICA
a[0]=1; a[1]=2; a[n_]:=If[EvenQ[n], Abs[a[n/2]-a[n/2-1]], a[(n-1)/2]+a[(n-3)/2]]; Array[a, 95, 0] (* Stefano Spezia, Apr 04 2024 *)
CROSSREFS
Cf. A029744.
Sequence in context: A329632 A014599 A274771 * A309155 A007735 A002616
KEYWORD
nonn,look
AUTHOR
John W. Layman, Oct 14 2002
STATUS
approved