login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075436
Right- or upward-moving paths connecting opposite corners of an n X n chessboard, visiting the diagonal in 0 up to (n-2) intermediate points between start and finish. Equivalently, subdivide the chessboard into 1 up to (n-1) blocks along the diagonal in all possible ways and sum the path-count over all sub-blocks.
6
2, 10, 52, 274, 1452, 7716, 41064, 218722, 1165564, 6213100, 33125336, 176629268, 941884088, 5022886536, 26786945232, 142857244674, 761881733148, 4063282813596, 21670523246712, 115574945807004, 616395334890408, 3287425475237496, 17532874879557552
OFFSET
2,1
COMMENTS
Invert transform gives the central binomial coefficients A000984.
If it is required that the paths stay at the same side of the diagonal between intermediate points, then the count of intermediate points becomes an exact count of crossings and one gets the central binomial coefficients A000984.
Row sums of A075435.
LINKS
Cyril Banderier, Markus Kuba, and Michael Wallner, Analytic Combinatorics of Composition schemes and phase transitions with mixed Poisson distributions, arXiv:2103.03751 [math.PR], 2021.
FORMULA
G.f.: x*(1-sqrt(1-4*x)-8*x)/(-3+16*x).
Recurrence (for n>3): 3*(n-1)*a(n) = 2*(14*n-23)*a(n-1)-32*(2*n-5)*a(n-2). - Vaclav Kotesovec, Oct 13 2012
a(n) ~ 2^(4*n-4)/3^n. - Vaclav Kotesovec, Oct 13 2012
a(n) = 2^(4*n-7)/3^(n-2) * (1 - Sum_{k=2..n-1} C(2*k-1,k)*3^(k-2)/((2*k-1) * 2^(4*k-4)) ), for n>2. - Vaclav Kotesovec, Oct 28 2012
G.f.: 2/(Q(0)-4*x), where Q(k) = 2*x + (k+1)/(2*k+1) - 2*x*(k+1)/(2*k+1)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 03 2013
EXAMPLE
a(3) = 10 because 0 intermediate points produces 6 paths on a 3 X 3 board and 1 intermediate points produces 4 paths:
1 . 1
1 . 2 . 2
. . 2 . 4
or 6 + 4 = 10 paths in total.
MATHEMATICA
Rest[CoefficientList[Series[(1-Sqrt[1-4*x]-8*x)/(-3+16*x), {x, 0, 24}], x]] (* corrected by Vaclav Kotesovec, Oct 28 2012 *) or combinatorially: Plus@@@Table[Table[Plus@@Apply[Times, Compositions[n-1-k, k]+1 /. i_Integer->Binomial[2i, i], {1}], {k, 1, n-1}], {n, 2, 12}]
Flatten[{2, Table[2^(4*n-7)/3^(n-2)*(1-Sum[Binomial[2*k-1, k]*3^(k-2)/((2*k-1)*2^(4*k-4)), {k, 2, n-1}] ), {n, 3, 20}]}] (* Vaclav Kotesovec, Oct 28 2012 *)
PROG
(PARI) x='x+O('x^66); Vec(x*(1-sqrt(1-4*x)-8*x)/(-3+16*x)) \\ Joerg Arndt, May 07 2013
CROSSREFS
Sequence in context: A020042 A353289 A307208 * A319325 A361805 A344576
KEYWORD
easy,nonn
AUTHOR
Wouter Meeussen, Sep 15 2002
STATUS
approved