The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A075436 Right- or upward-moving paths connecting opposite corners of an n X n chessboard, visiting the diagonal in 0 up to (n-2) intermediate points between start and finish. Equivalently, subdivide the chessboard into 1 up to (n-1) blocks along the diagonal in all possible ways and sum the path-count over all sub-blocks. 4
 2, 10, 52, 274, 1452, 7716, 41064, 218722, 1165564, 6213100, 33125336, 176629268, 941884088, 5022886536, 26786945232, 142857244674, 761881733148, 4063282813596, 21670523246712, 115574945807004, 616395334890408, 3287425475237496, 17532874879557552 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS Invert transform gives the central binomial coefficients A000984. If it is required that the paths stay at the same side of the diagonal between intermediate points, then the count of intermediate points becomes an exact count of crossings and one gets the central binomial coefficients A000984. Row sums of A075435. LINKS Vincenzo Librandi, Table of n, a(n) for n = 2..200 FORMULA G.f.: x*(1-sqrt(1-4*x)-8*x)/(-3+16*x). Recurrence (for n>3): 3*(n-1)*a(n) = 2*(14*n-23)*a(n-1)-32*(2*n-5)*a(n-2). - Vaclav Kotesovec, Oct 13 2012 a(n) ~ 2^(4*n-4)/3^n. - Vaclav Kotesovec, Oct 13 2012 a(n) = 2^(4*n-7)/3^(n-2) * (1 - Sum_{k=2..n-1} C(2*k-1,k)*3^(k-2)/((2*k-1) * 2^(4*k-4)) ), for n>2. - Vaclav Kotesovec, Oct 28 2012 G.f.: 2/(Q(0)-4*x), where Q(k) = 2*x + (k+1)/(2*k+1) - 2*x*(k+1)/(2*k+1)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 03 2013 EXAMPLE a(3) = 10 because 0 intermediate points produces 6 paths on a 3 X 3 board and 1 intermediate points produces 4 paths: 1 . 1 1 . 2 . 2 . . 2 . 4 or 6 + 4 = 10 paths in total. MATHEMATICA Rest[CoefficientList[Series[(1-Sqrt[1-4*x]-8*x)/(-3+16*x), {x, 0, 24}], x]]  (* corrected by Vaclav Kotesovec, Oct 28 2012 *)  or combinatorially: Plus@@@Table[Table[Plus@@Apply[Times, Compositions[n-1-k, k]+1 /. i_Integer->Binomial[2i, i], {1}], {k, 1, n-1}], {n, 2, 12}] Flatten[{2, Table[2^(4*n-7)/3^(n-2)*(1-Sum[Binomial[2*k-1, k]*3^(k-2)/((2*k-1)*2^(4*k-4)), {k, 2, n-1}] ), {n, 3, 20}]}] (* Vaclav Kotesovec, Oct 28 2012 *) PROG (PARI) x='x+O('x^66); Vec(x*(1-sqrt(1-4*x)-8*x)/(-3+16*x)) \\ Joerg Arndt, May 07 2013 CROSSREFS Cf. A075435, A000984. Sequence in context: A019475 A020042 A307208 * A319325 A074612 A104497 Adjacent sequences:  A075433 A075434 A075435 * A075437 A075438 A075439 KEYWORD easy,nonn AUTHOR Wouter Meeussen, Sep 15 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 5 07:29 EDT 2020. Contains 336209 sequences. (Running on oeis4.)