login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075397
Number of multiples of n with no zero digit with sum of digits = n.
2
1, 1, 4, 2, 1, 11, 9, 15, 256, 0, 0, 408, 307, 387, 511, 1608, 3821, 43207, 13651, 0, 147897, 115063, 179695, 938500, 133868, 844163, 21955502, 3756136, 9067127, 0, 33861703, 46269686, 177316890, 163959413, 75053719, 6678119984, 1776064204
OFFSET
1,3
EXAMPLE
a(3) = 4, the multiples being 3, 12, 21, 111. a(4) = 2 the partition of 4 are (4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1).and the two multiples of 4 obtained by rearranging the digits are 4 and 112.
a(6) = 11: 6*1=6,6*4=24,6*7=42,6*19=114,6*22=132,6*37=222,6*52=312,6*187=1122,6*202=1212,6*352=2112,6*1852=11112
a(7) = 9: 7*1=7,7*19=133,7*46=322,7*73=511,7*163=1141,7*316=2212,7*1603=11221,7*1873=13111,7*3016=21112
a(8) = 15: 8*1=8,8*19=152,8*28=224,8*64=512,8*154=1232,8*289=2312,8*514=4112,8*1414=11312,8*1639=13112,8*2764=22112,8*3889=31112,8*14014=112112,8*15139=121112,8*26389=211112,8*138889=1111112
PROG
(PARI) a(n) = local (pv, c, T, newT, x); pv = 1; c = 0; T = matrix(n, n); for (i = 1, min(n, 9), T[1 + n - i, 1 + i%n] = 1); for (k = 1, n - 1, pv = pv*10%n; newT = matrix(n - k, n); for (j = 1, n, newT[1, j] = T[1, j]); for (i = 2, n - k + 1, for (j = 1, n, x = T[i, j]; if (x, for (d = 1, min (i - 1, 9), newT[i - d, (j - 1 + d*pv)%n + 1] += x)))); T = newT); T[1, 1]; \\ David Wasserman, Jan 18 2005
CROSSREFS
Number of terms in the n-th row of A077755.
Sequence in context: A342088 A193607 A358735 * A049429 A328647 A183158
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Sep 23 2002
EXTENSIONS
a(6)-a(10) from Deepan Majmudar (deepan.majmudar(AT)hp.com), Dec 03 2004
More terms from David Wasserman, Jan 18 2005
STATUS
approved