login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Binomial transform of reflected tetranacci numbers A074058: a(n)=Sum((-1)^k Binomial(n,k)*A074058(k),(k=0,..,n)).
0

%I #6 Jun 17 2023 07:58:50

%S 4,5,5,5,13,50,155,390,861,1805,3850,8640,20167,47520,110780,254450,

%T 579149,1316485,3003095,6878765,15790278,36245235,83101760,190322935,

%U 435678591,997445500,2284365660,5233190405,11989714652,27467989310

%N Binomial transform of reflected tetranacci numbers A074058: a(n)=Sum((-1)^k Binomial(n,k)*A074058(k),(k=0,..,n)).

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (5, -10, 10, -3).

%F a(n)=5a(n-1)-10a(n-2)+10a(n-3)-3a(n-4), a(0)=4, a(1)=5, a(2)=5, a(3)=5. G.f.: (4 - 15*z + 20*z^2 - 10*z^3)/(1 - 5*z + 10*z^2 - 10*z^3 + 3*z^4).

%t CoefficientList[Series[(4-15*z+20*z^2-10*z^3)/(1-5*z+10*z^2-10*z^3+3*z^4), {z, 0, 30}], z]

%Y Cf. A074058, A075128.

%K easy,nonn

%O 0,1

%A Mario Catalani (mario.catalani(AT)unito.it), Sep 03 2002