The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A074890 Decimal form of binary integers produced by a modified version of Wolfram's Rule 30 one-dimensional cellular automaton. 4
 1, 3, 6, 13, 25, 55, 100, 222, 401, 891, 1602, 3559, 6428, 14258, 25647, 56936, 102860, 228154, 410339, 910998, 1645813, 3650437, 6565453, 14576121, 26332935, 58407052, 105047514, 233217299, 421327294, 934513441, 1680759539 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS According to the common nomenclature (see A110240), this is actually a Rule 86 for all but the least-significant bit, and a Rule 252 for the least-significant bit, because the (fractional) bits right from the binary dot are never set. As a side effect, the first 11 terms--not the 12th--can be reproduced by a(n)=floor(A110240(n)/2^n). [From R. J. Mathar, Apr 29 2009] REFERENCES S. Wolfram, A New Kind of Science, Wolfram Media Inc., (2002), p. 27. LINKS Table of n, a(n) for n=0..30. FORMULA If b(n) is current binary digit, perform for each digit to get next integer in sequence: b(n) = (b(n)==0 && b(n+1)==0) ? b(n-1) : 1-b(n-1);//Wolfram's Rule 30* EXAMPLE a(4)=13 because a(3)=6=0110(binary) and applying Rule 30 to each digit [(b(n)==0 && b(n+1)==0) ? b(n-1) : 1-b(n-1)] PROG (Java) /** Java class to generate sequence */ public class r30seqA { static String zero="0", one="1"; public static void main(String[] args) { int base10 = 1; System.out.println(base10); for(int i=0; i<30; i++) System.out.println(base10 = base10Convert(applyR30(Integer.toBinaryString(base10)))); } static String applyR30(String base2) { int a0, a1, a2, newDigit; StringBuffer newBase2 = new StringBuffer(); for(int i=-1; i

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 12 01:49 EDT 2024. Contains 375842 sequences. (Running on oeis4.)