login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A074889
Non-palindromic numbers such that the two largest proper divisors are palindromes having at least two digits and no other divisor is a palindrome with at least two digits.
1
524, 928, 1179, 1252, 1292, 1372, 1736, 2101, 2525, 2817, 4103, 4213, 4949, 8327, 8657, 8767, 10109, 10219, 19781, 23711, 25021, 27331, 28841, 34571, 41003, 41204, 45244, 45644, 46243, 47263, 48863, 49684, 50173, 52124, 53303, 53324, 56164, 56323, 56564, 56643
OFFSET
1,1
LINKS
David Consiglio, Jr., Table of n, a(n) for n = 1..212
David Consiglio, Jr., Python Program
EXAMPLE
928 is here since the divisors of 928 are [1, 2, 4, 8, 16, 29, 32, 58, 116, *232*, *464*, 928].
MAPLE
ispali:= proc(n) local L;
L:= convert(n, base, 10); evalb(L = ListTools:-Reverse(L))
end proc:
filter:= proc(n) local D;
if ispali(n) then return false fi;
D:= sort(convert(select(`>=`, numtheory:-divisors(n) minus {n}, 10), list));
nops(D) >= 2 and select(ispali, D) = [D[-2], D[-1]];
end proc:
select(filter, [$1..10^5]); # Robert Israel, Oct 12 2015
MATHEMATICA
tldp[n_]:=Module[{d=Select[Most[Divisors[n]], #>9&]}, Length[d]>1&&d[[-2]]> 9 && !PalindromeQ[n]&&AllTrue[Take[d, -2], PalindromeQ]&&NoneTrue[Drop[d, -2], PalindromeQ]]; Select[Range[57000], tldp] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 11 2021 *)
CROSSREFS
Cf. A075407.
Sequence in context: A207356 A207199 A045209 * A249286 A283345 A125012
KEYWORD
base,nonn
AUTHOR
Jason Earls, Sep 13 2002
EXTENSIONS
Corrected and extended by David Consiglio, Jr., Oct 12 2015
STATUS
approved