The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A074889 Non-palindromic numbers such that the two largest proper divisors are palindromes having at least two digits and no other divisor is a palindrome with at least two digits. 1
 524, 928, 1179, 1252, 1292, 1372, 1736, 2101, 2525, 2817, 4103, 4213, 4949, 8327, 8657, 8767, 10109, 10219, 19781, 23711, 25021, 27331, 28841, 34571, 41003, 41204, 45244, 45644, 46243, 47263, 48863, 49684, 50173, 52124, 53303, 53324, 56164, 56323, 56564, 56643 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS David Consiglio, Jr., Table of n, a(n) for n = 1..212 David Consiglio, Jr., Python Program EXAMPLE 928 is here since the divisors of 928 are [1, 2, 4, 8, 16, 29, 32, 58, 116, *232*, *464*, 928]. MAPLE ispali:= proc(n) local L; L:= convert(n, base, 10); evalb(L = ListTools:-Reverse(L)) end proc: filter:= proc(n) local D; if ispali(n) then return false fi; D:= sort(convert(select(`>=`, numtheory:-divisors(n) minus {n}, 10), list)); nops(D) >= 2 and select(ispali, D) = [D[-2], D[-1]]; end proc: select(filter, [\$1..10^5]); # Robert Israel, Oct 12 2015 MATHEMATICA tldp[n_]:=Module[{d=Select[Most[Divisors[n]], #>9&]}, Length[d]>1&&d[[-2]]> 9 && !PalindromeQ[n]&&AllTrue[Take[d, -2], PalindromeQ]&&NoneTrue[Drop[d, -2], PalindromeQ]]; Select[Range[57000], tldp] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 11 2021 *) CROSSREFS Cf. A075407. Sequence in context: A207356 A207199 A045209 * A249286 A283345 A125012 Adjacent sequences: A074886 A074887 A074888 * A074890 A074891 A074892 KEYWORD base,nonn AUTHOR Jason Earls, Sep 13 2002 EXTENSIONS Corrected and extended by David Consiglio, Jr., Oct 12 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 4 10:17 EST 2023. Contains 360048 sequences. (Running on oeis4.)