Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Sep 08 2022 08:45:07
%S 5,4,2,-2,-10,-16,-4,46,142,250,262,4,-652,-1530,-1818,38,5662,14760,
%T 22028,15014,-22490,-95846,-172434,-154740,110500,733134,1556206,
%U 1875238,365334,-4306496,-11734244,-17112802,-9496002,25050298,90586134,157886356,142006676,-87803882
%N Binomial transform of reflected pentanacci numbers A074062: a(n) = Sum_{k=0..n} binomial(n,k)*A074062(k).
%H G. C. Greubel, <a href="/A074825/b074825.txt">Table of n, a(n) for n = 0..1000</a>
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (4,-7,6,-3,2).
%F a(n) = 4*a(n-1) - 7*a(n-2) + 6*a(n-3) - 3*a(n-4) + 2*a(n-5), a(0)=5, a(1)=4, a(2)=2, a(3)=-2, a(4)=-10.
%F G.f.: (5 -16*x +21*x^2 -12*x^3 +3*x^4)/(1 -4*x +7*x^2 -6*x^3 +3*x^4 -2*x^5).
%t CoefficientList[Series[(5-16x+21x^2-12x^3+3x^4)/(1-4x+7x^2-6x^3+3x^4-2x^5), {x, 0, 40}], x]
%t LinearRecurrence[{4,-7,6,-3,2},{5,4,2,-2,-10},40] (* _Harvey P. Dale_, Nov 29 2019 *)
%o (Magma) I:=[5,4,2,-2,-10]; [n le 5 select I[n] else 4*Self(n-1) -7*Self(n-2) +6*Self(n-3) -3*Self(n-4) +2*Self(n-5): n in [1..51]]; // _G. C. Greubel_, Jul 05 2021
%o (Sage)
%o def A074825_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P( (5-16*x+21*x^2-12*x^3+3*x^4)/(1-4*x+7*x^2-6*x^3+3*x^4-2*x^5) ).list()
%o A074825_list(50) # _G. C. Greubel_, Jul 05 2021
%Y Cf. A074062.
%K easy,sign
%O 0,1
%A Mario Catalani (mario.catalani(AT)unito.it), Sep 09 2002