The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A074742 a(n) = (n^3 + 6n^2 - n + 12)/6. 3
 2, 3, 7, 15, 28, 47, 73, 107, 150, 203, 267, 343, 432, 535, 653, 787, 938, 1107, 1295, 1503, 1732, 1983, 2257, 2555, 2878, 3227, 3603, 4007, 4440, 4903, 5397, 5923, 6482, 7075, 7703, 8367, 9068, 9807, 10585, 11403, 12262, 13163, 14107, 15095, 16128, 17207, 18333 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 REFERENCES A. Schultze, Advanced Algebra, Macmillan, London, 1910; p. 552. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000 Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA From R. J. Mathar, Sep 23 2008: (Start) G.f.: (2 - 5*x + 7*x^2 - 3*x^3)/(1-x)^4. a(n) = A027965(n+1), n > 0. (End) MATHEMATICA Table[(n^3 + 6n^2 - n + 12)/6, {n, 0, 49}] (* Alonso del Arte, Jan 13 2012 *) CoefficientList[Series[(2-5x+7x^2-3x^3)/(1-x)^4, {x, 0, 50}], x] (* or *) LinearRecurrence[ {4, -6, 4, -1}, {2, 3, 7, 15}, 50] (* Harvey P. Dale, Aug 05 2022 *) PROG (PARI) a(n)=n*(n^2+6*n-1)/6+2 \\ Charles R Greathouse IV, Jan 13 2012 (Magma) [(n^3 + 6*n^2 - n + 12)/6: n in [0..50]]; // Vincenzo Librandi, Jan 13 2012 CROSSREFS Sequence in context: A098763 A001276 A006884 * A020873 A049958 A298403 Adjacent sequences: A074739 A074740 A074741 * A074743 A074744 A074745 KEYWORD nonn,easy AUTHOR Susanna Cuyler, Sep 06 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 12:40 EST 2022. Contains 358441 sequences. (Running on oeis4.)