login
A074313
a(n) = the maximal length of a sequence of primes {s_1 = prime(n), s_2 = f(s1), s_3 = f(s_2), ....} formed by repeated application of f(m) = Floor(m/2) on prime(n).
2
1, 1, 2, 2, 3, 1, 1, 1, 4, 1, 1, 1, 1, 1, 5, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1
OFFSET
1,3
COMMENTS
The smallest value of n such that a(n) = 6 is n = 417.
EXAMPLE
To compute a(9): prime(9) = 23, f(23) = 11, f(11) = 5, f(5) = 2, f(2) = 1, where f(m) = Floor(m/2). Hence the sequence (of length 4) 23, 11, 5, 2 is the sequence of primes of maximal length formed by repeated application of f to prime(9) = 23. Therefore a(9) = 4.
MATHEMATICA
f[n_] := Module[{i}, i = 0; m = n; While[PrimeQ[m], m = Floor[m/2]; i++ ]; i]; Table[f[Prime[i]], {i, 1, 100}]
CROSSREFS
Sequence in context: A329311 A308746 A367125 * A367438 A303506 A213194
KEYWORD
easy,nonn
AUTHOR
Joseph L. Pe, Sep 22 2002
STATUS
approved