|
|
A074312
|
|
Numbers k such that the product of the digits of k equals the number of divisors of k.
|
|
3
|
|
|
1, 2, 14, 22, 24, 32, 42, 116, 122, 126, 141, 211, 221, 222, 411, 512, 1114, 1118, 1128, 1132, 1141, 1144, 1218, 1222, 1242, 1314, 1332, 1411, 1611, 1612, 2111, 2114, 2132, 2214, 2232, 2312, 2511, 3114, 3211, 3212, 4116, 4131, 4312, 6112, 8211
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
EXAMPLE
|
24 is a term as the product of the digits of 24 is 2*4 = 8 and the number of divisors = 8.
|
|
MAPLE
|
with(numtheory):l := 1:a[1] := 1:for n from 2 to 10000 do d := convert(n, base, 10): if(product(d[i], i=1..nops(d))=tau(n)) then l := l+1:a[l] := n:fi:od:seq(a[i], i=1..l); # Sascha Kurz
|
|
MATHEMATICA
|
Select[Range[10^4], Apply[Times, IntegerDigits[ # ]] == DivisorSigma[0, # ] &]
|
|
CROSSREFS
|
|
|
KEYWORD
|
base,easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|