%I
%S 1,2,6,12,6,12,12,30,6,24,18,42,6,12,42,6,12,30,12,66,60,12,12,48,18,
%T 84,48,12,6,24,36,24,18,48,102,42,60,6,12,18,54,120,6,60,120,30,12,30,
%U 18,12,48
%N Gaps between primes p such that 2p+1 is also prime, i.e., SophieGermain primes A005384.
%C The first two consecutive identical gaps are 12, 12 between A005384(6..8) = (29, 41, 53).
%C The first three, four and five identical gaps in a row are equal to 30, 150 and 420, respectively, and occur after A005384(85) = 3299, A005384(29952) = 4866623, and A005384(32361449747) = 22081407211439. These were found by N. Fernandez and G. Resta, see link to discussion on the SeqFan mailing list.  _M. F. Hasler_, Sep 18 2016
%H M. F. Hasler, <a href="/A074259/b074259.txt">Table of n, a(n) for n = 1..7745</a>
%H Giovanni Resta, in reply to Harvey P. Dale and others, <a href="http://list.seqfan.eu/pipermail/seqfan/2016September/016776.html">Re: Consecutive Sophie Germain primes with the same gap</a>, SeqFan mailing list, Sep. 2016. (Click "Previous message" to see <a href="http://list.seqfan.eu/pipermail/seqfan/2016September/016771.html">Neil Fernandez' earlier results</a>.)
%t Select[Prime[Range[500]],PrimeQ[2#+1]&]//Differences (* _Harvey P. Dale_, Jul 15 2019 *)
%o (PARI) c=0; forprime(p=1+L=2,10^6,if(isprime(2*p+1),write("primegap.txt",c++," "pL); L=p)) \\ Edited by _M. F. Hasler_, Sep 16 2016
%Y First differences of A005384.
%K nonn
%O 1,2
%A _Jon Perry_, Sep 20 2002
%E Edited (name, offset, more terms) by _M. F. Hasler_, Sep 16 2016
