login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of coefficients, read by rows, where the n-th row forms the polynomial P(n,x) = {Sum_{k=1..n} 1/(k+x)}*{Product_{k=1..n} (k+x)}.
2

%I #42 Jun 25 2018 22:59:26

%S 1,3,2,11,12,3,50,70,30,4,274,450,255,60,5,1764,3248,2205,700,105,6,

%T 13068,26264,20307,7840,1610,168,7,109584,236248,201852,89796,22680,

%U 3276,252,8,1026576,2345400,2171040,1077300,316365,56700,6090,360,9

%N Triangle of coefficients, read by rows, where the n-th row forms the polynomial P(n,x) = {Sum_{k=1..n} 1/(k+x)}*{Product_{k=1..n} (k+x)}.

%C The n-th row polynomial, P(n,x), has ordered zeros {z_k < z_(k+1), 0<k<n} that satisfy z_k + z_(n-k) = -(n+1) and integerpart(z_k) = -k. For even rows, polynomial P(2n,x) has zero z_n = -(n+1)/2. Example: at n=6, P(6,x) has zeros z_1 = -1.336553473264694, z_2 = -2.426299641757407, z_3 = -3.5, z_4 = -4.573700358242594, z_5 = -5.663446526735307.

%C The higher-order exponential integrals E(x,m,n) are defined in A163931 and the asymptotic expansion of E(x,m=2,n) can be found in A028421. We determined with the latter that E(x,m=2,n+1) = (exp(-x)/x^2)*(1 - (3+2*n)/x + (11+12*n+3*n^2)/x^2 - (50+70*n+30*n^2+ 4*n^3)/x^3 + .... ). The polynomial coefficients in the numerators lead to the coefficients of the triangle given above. The numerators of the o.g.f.s of the right hand columns of this triangle lead for z = 1 to A001147. - _Johannes W. Meijer_, Oct 16 2009

%H G. C. Greubel, <a href="/A074246/b074246.txt">Table of n, a(n) for the first 50 rows, flattened</a>

%F First column is A000254 (Stirling numbers of first kind s(n, 2): a(n+1)=(n+1)*a(n)+n!), while sum of rows is A001705 (generalized Stirling numbers). Also related to Harmonic numbers: P(n, 0)=n!*H(n), H(n)=harmonic number.

%F T(n,k) = (-1)^(n+k)*k*Stirling1(n+1,k+1). - _Johannes W. Meijer_, Oct 16 2009

%F E.g.f.: 1/(1 - z)^(x+1)*log(1/(1 - z)). Cf. A028421. - _Peter Bala_, Jan 06 2015

%e Polynomials begin:

%e P(1,x) = 1,

%e P(2,x) = 3 + 2x,

%e P(3,x) = 11 + 12x + 3x^2,

%e P(4,x) = 50 + 70x + 30x^2 + 4x^3,

%e P(5,x) = 274 + 450x + 255x^2 + 60x^3 + 5x^4,

%e P(6,x) = 1764 + 3248x + 2205x^2 + 700x^3 + 105x^4 + 6x^5,

%e P(7,x) = 13068 + 26264x + 20307x^2 + 7840x^3 + 1610x^4 + 168x^5 + 7x^6,

%e P(8,x) = 109584 + 236248x + 201852x^2 + 89796x^3 + 22680x^4 + 3276x^5 + 252x^6 + 8x^7,

%e P(9,x) = 1026576 + 2345400x + 2171040x^2 + 1077300x^3 + 316365x^4 + 56700x^5 + 6090x^6 + 360x^7 + 9x^8,

%e P(10,x) = 10628640 + 25507152x + 25228500x^2 + 13667720x^3 + 4510275x^4 + 946638x^5 + 127050x^6 + 10560x^7 + 495x^8 + 10x^9, ...

%p with(combinat): A074246 := proc(n,m): (-1)^(n+m)*binomial(m,1)*stirling1(n+1,m+1) end: seq(seq(A074246(n,m),m=1..n),n=1..9); # _Johannes W. Meijer_, Oct 16 2009, Revised Sep 09 2012

%t p[n_, x_] := Sum[1/(k+x), {k, 1, n}] Product[k+x, {k, 1, n}] ; Flatten[Table[ CoefficientList[ p[n, x] // Simplify[#, ComplexityFunction -> Length] &, x], {n, 1, 9}]] (* _Jean-François Alcover_, May 04 2011 *)

%o (PARI) P(n) = Vecrev(sum(k=1, n, prod(k=1, n, (k+x))/(k+x)));

%o for (n=1, 10, print(P(n))) \\ _Michel Marcus_, Jan 22 2017

%Y See references and formulas at A000254, A001705. Cf. A028421.

%Y A027480 is the second right hand column. - _Johannes W. Meijer_, Oct 16 2009

%K easy,nice,nonn,tabl

%O 1,2

%A _Paul D. Hanna_, Sep 19 2002