The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A074208 Least k > 1 such that n divides sigma(k) - k. 1
 2, 6, 4, 9, 14, 6, 8, 10, 15, 14, 20, 24, 27, 22, 16, 12, 39, 24, 48, 34, 18, 20, 52, 90, 40, 46, 42, 28, 68, 78, 32, 56, 45, 62, 84, 24, 70, 48, 66, 44, 63, 30, 50, 82, 78, 52, 116, 90, 75, 40, 132, 96, 80, 42, 36, 106, 99, 68, 148, 120, 130, 118, 64, 56, 117, 54, 136, 112 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Ivan Neretin, Table of n, a(n) for n = 1..10000 FORMULA Conjecture: Sum_{k=1..n} a(k) = O(n^{2+epsilon}) for any epsilon > 0. Between n = 90000 and 100000, Sum_{k=1..n} a(k)/n^2 slowly but not monotonically increases from 1.0007 to 1.0023. At n = 10^6, it's about 1.0147. - David A. Corneth, Oct 23 2017 MATHEMATICA a = ConstantArray[1, 68]; k = 1; While[Length[vac = Flatten[Position[a, 1]]] > 0, k++; a[[Intersection[Divisors[DivisorSigma[1, k] - k], vac]]] *= k]; a (* Ivan Neretin, May 15 2015 *) lk[n_]:=Module[{k=2}, While[!Divisible[DivisorSigma[1, k]-k, n], k++]; k]; Array[lk, 70] (* Harvey P. Dale, Oct 23 2017 *) PROG (PARI) a(n)=if(n<0, 0, s=2; while((sigma(s)-s)%n>0, s++); s) (PARI) first(n)=my(res = vector(n), todo = n - 1, k = 2); res[1] = 2; while(todo > 0, d = divisors(sigma(k) - k); for(i=2, #d, if(d[i] <= n && res[d[i]] == 0, res[d[i]] = k; todo--)); k++); res \\ David A. Corneth, Oct 23 2017 CROSSREFS Cf. A070982. Sequence in context: A324651 A201895 A192408 * A333775 A334205 A227389 Adjacent sequences:  A074205 A074206 A074207 * A074209 A074210 A074211 KEYWORD nonn,easy AUTHOR Benoit Cloitre, Sep 17 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 02:01 EDT 2020. Contains 334581 sequences. (Running on oeis4.)