The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A074100 Cubes using only digits 1, 2, 3, 5 and 7. 3
 1, 27, 125, 512, 1331, 3375, 753571, 2571353, 5177717, 17173512, 25153757, 72511713, 11512557512, 22211737731, 27135225125, 125375375125, 552377215125, 2252212155712, 3531251132352, 7127771131125, 23771111713777, 31122112521375, 37521355131352, 125112533753375 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Conjecture: the sequence is finite. Opposite conjecture: the sequence is infinite. The frequency of terms with k digits is 4, 3, 5, 5, 9, 11, 12, 13, 22, 29, 33, 37, 49, 49, 78 for k = 1..15 respectively. - David A. Corneth, Mar 17 2019 LINKS David A. Corneth, Table of n, a(n) for n = 1..359 (Terms < 10^45; first 37 terms from Jayanta Basu) EXAMPLE 137^3 = 2571353, smallest term using the five digits 1, 2, 3, 5 and 7. - Bernard Schott, Mar 18 2019 91^3 = 753571 as 753571 uses only digits from 1, 2, 3, 5 and 7. It's fine that 91 doesn't. - David A. Corneth, Mar 18 2019 MATHEMATICA t1 = Prepend[Prime[Range[4]], 1]; Select[Range[35000]^3, Complement[IntegerDigits[#], t1] == {} &] (* Jayanta Basu, Jul 31 2013 *) PROG (Python) A074100_list = [n**3 for n in range(1, 10**6) if set(str(n**3)) <= set('12357')] # Chai Wah Wu, Mar 16 2019 CROSSREFS Cf. A079656. Sequence in context: A118092 A126272 A016755 * A082610 A061434 A092770 Adjacent sequences:  A074097 A074098 A074099 * A074101 A074102 A074103 KEYWORD nonn,base AUTHOR Amarnath Murthy, Aug 21 2002 EXTENSIONS More terms from Sascha Kurz, Jan 30 2003 Two more terms from Jayanta Basu, Jul 31 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 23:04 EDT 2021. Contains 347596 sequences. (Running on oeis4.)