login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A073996 Number of strings of length n over GF(4) with trace 0 and subtrace 1. 4
0, 1, 3, 12, 60, 256, 1008, 4032, 16320, 65536, 261888, 1047552, 4193280, 16777216, 67104768, 268419072, 1073725440, 4294967296, 17179803648, 68719214592, 274877644800, 1099511627776, 4398045462528, 17592181850112, 70368739983360, 281474976710656, 1125899890065408, 4503599560261632, 18014398442373120 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Same as the number of strings of length n over GF(4) with trace 0 and subtrace x where x=RootOf(z^2+z+1). Same as the number of strings of length n over GF(4) with trace 0 and subtrace y where y=1+x.

LINKS

Table of n, a(n) for n=1..29.

F. Ruskey Strings over GF(4) with given trace and subtrace

FORMULA

a(n; t, s) = a(n-1; t, s) + a(n-1; t-1, s-(t-1)) + a(n-1; t-2, s-2(t-2)) + a(n-1; t-3, s-3(t-3)) where t is the trace and s is the subtrace. Note that all operations involving operands t or s are carried out over GF(4).

G.f.: (6*q^2-3*q+1)*q^2/[(1-2q)(1-4q)(1+4q^2)]. - Lawrence Sze, Oct 24 2004

EXAMPLE

a(2;0,1)=1 since the one 4-ary string of trace 0, subtrace 1 and length 2 is { 11 }.

MATHEMATICA

CoefficientList[Series[x^2 (6x^2-3x+1)/((1-2x)(1-4x)(1+4x^2)), {x, 0, 30}], x]  (* Harvey P. Dale, Apr 03 2011 *)

CROSSREFS

Cf. A073995, A073997, A073998, A073999, A074000.

Sequence in context: A127918 A069944 A253171 * A003483 A278395 A128602

Adjacent sequences:  A073993 A073994 A073995 * A073997 A073998 A073999

KEYWORD

easy,nonn

AUTHOR

Frank Ruskey and Nate Kube, Aug 16 2002

EXTENSIONS

More terms from Harvey P. Dale, Apr 03 2011

More terms from Max Alekseyev, Apr 16 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 26 13:40 EST 2021. Contains 341632 sequences. (Running on oeis4.)