Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Apr 23 2016 14:37:11
%S 1,1,3,3,10,10,22,22,57,57,115,115,248,248,456,456,906,906,1598,1598,
%T 2956,2956,4980,4980,8802,8802,14422,14422,24440,24440,38856,38856,
%U 63881,63881,99515,99515,159106,159106,242654,242654,379609,379609
%N First differences of A073708.
%C The convolution of this sequence results in A073710 and is equal to the first differences of the unique terms of this sequence.
%H Reinhard Zumkeller, <a href="/A073709/b073709.txt">Table of n, a(n) for n = 0..10000</a>
%F G.f. satisfies: A(x) = A(x^2)^2/(1-x).
%F G.f.: Product_{n>=0} 1/(1-x^(2^n))^(2^n). [_Paul D. Hanna_, May 01 2010]
%e G.f.: A(x) = 1 + x + 3*x^2 + 3*x^3 + 10*x^4 + 10*x^5 + 22*x^6 + 22*x^7 +...
%e where A(x) = A(x^2)^2/(1-x) and thus
%e A(x) = 1 / [(1-x)*(1-x^2)^2*(1-x^4)^4*(1-x^8)^8*(1-x^16)^16*...].
%e Compare A(x)*(1-x) to A(x)^2:
%e A(x)*(1-x) = 1 + 2*x^2 + 7*x^4 + 12*x^6 + 35*x^8 + 58*x^10 + 133*x^12 +...
%e A(x)^2 = 1 + 2*x + 7*x^2 + 12*x^3 + 35*x^4 + 58*x^5 + 133*x^6 + 208*x^7 +...
%e Also note that
%e A(x)^2/(1-x) = 1 + 3*x + 10*x^2 + 22*x^3 + 57*x^4 + 115*x^5 + 248*x^6 + 456*x^7 +...
%t terms = 42; For[m = 1; A = 1, m <= 2*terms, m = 2*m, A = ((1+x)*(Normal[A] /. x -> x^2))^2 + O[x]^m]; Join[{1}, Differences[CoefficientList[A, x] ]][[1 ;; terms]] (* _Jean-François Alcover_, Mar 06 2013, updated Apr 23 2016 *)
%o (PARI) {a(n)=polcoeff(prod(j=0,#binary(n),1/(1-x^(2^j)+x*O(x^n))^(2^j)),n)} \\ _Paul D. Hanna_, May 01 2010
%o (Haskell)
%o a073709 n = a073709_list !! n
%o a073709_list = 1 : zipWith (-) (tail a073708_list) a073708_list
%o --- _Reinhard Zumkeller_, Jun 13 2013
%Y Cf. A073707, A073708, A073710.
%K easy,nice,nonn
%O 0,3
%A _Paul D. Hanna_, Aug 05 2002