Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Feb 20 2024 06:59:44
%S 5,32,50,162,512,1984,2450,3784,5408,7564,9248,15488,19208,22684,
%T 26680,30752,53792,79600,85698,102604,113764,131584,189112,199712,
%U 279752,336200,435244,514098,546012,581042,658952,712818,727218,752764,767560
%N Numbers k such that the number of divisors of k equals the number of anti-divisors of k.
%C See A066272 for definition of anti-divisor.
%H Vincenzo Librandi and Donovan Johnson, <a href="/A073694/b073694.txt">Table of n, a(n) for n = 1..1000</a> (first 227 terms from Vincenzo Librandi)
%e 32 is here since it has 6 divisors: {1, 2, 4, 8, 16, 32} and 6 anti-divisors: {3, 5, 7, 9, 13, 21}.
%t atd[n_] := Count[Flatten[Quotient[#, Rest[Select[Divisors[#], OddQ]]] & /@ (2 n + Range[-1, 1])], Except[1]]; Select[Range[770000], DivisorSigma[0, #] == atd[#] &] (* _Jayanta Basu_, Jul 06 2013 *)
%o (PARI) {for(n=1,770000,v1=[]; v2=[]; v3=[]; ds=divisors(2*n-1); for(k=2,matsize(ds)[2]-1, if(ds[k]%2>0,v1=concat(v1,ds[k]))); ds=divisors(2*n); for(k=2,matsize(ds)[2]-1,if(ds[k]%2>0, v2=concat(v2,ds[k]))); ds=divisors(2*n+1); for(k=2,matsize(ds)[2]-1,if(ds[k]%2>0,v3=concat(v3,ds[k]))); v=vecsort(concat(v1,concat(v2,v3))); if(matsize(v)[2]==numdiv(n),print1(n,",")))}
%Y Cf. A000005, A066272.
%K nonn
%O 1,1
%A _Jason Earls_, Aug 30 2002
%E Edited and extended by _Klaus Brockhaus_, Sep 01 2002