login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073694
Numbers k such that the number of divisors of k equals the number of anti-divisors of k.
2
5, 32, 50, 162, 512, 1984, 2450, 3784, 5408, 7564, 9248, 15488, 19208, 22684, 26680, 30752, 53792, 79600, 85698, 102604, 113764, 131584, 189112, 199712, 279752, 336200, 435244, 514098, 546012, 581042, 658952, 712818, 727218, 752764, 767560
OFFSET
1,1
COMMENTS
See A066272 for definition of anti-divisor.
LINKS
Vincenzo Librandi and Donovan Johnson, Table of n, a(n) for n = 1..1000 (first 227 terms from Vincenzo Librandi)
EXAMPLE
32 is here since it has 6 divisors: {1, 2, 4, 8, 16, 32} and 6 anti-divisors: {3, 5, 7, 9, 13, 21}.
MATHEMATICA
atd[n_] := Count[Flatten[Quotient[#, Rest[Select[Divisors[#], OddQ]]] & /@ (2 n + Range[-1, 1])], Except[1]]; Select[Range[770000], DivisorSigma[0, #] == atd[#] &] (* Jayanta Basu, Jul 06 2013 *)
PROG
(PARI) {for(n=1, 770000, v1=[]; v2=[]; v3=[]; ds=divisors(2*n-1); for(k=2, matsize(ds)[2]-1, if(ds[k]%2>0, v1=concat(v1, ds[k]))); ds=divisors(2*n); for(k=2, matsize(ds)[2]-1, if(ds[k]%2>0, v2=concat(v2, ds[k]))); ds=divisors(2*n+1); for(k=2, matsize(ds)[2]-1, if(ds[k]%2>0, v3=concat(v3, ds[k]))); v=vecsort(concat(v1, concat(v2, v3))); if(matsize(v)[2]==numdiv(n), print1(n, ", ")))}
CROSSREFS
Sequence in context: A247549 A140154 A350997 * A322952 A101966 A341423
KEYWORD
nonn
AUTHOR
Jason Earls, Aug 30 2002
EXTENSIONS
Edited and extended by Klaus Brockhaus, Sep 01 2002
STATUS
approved