The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A073276 Irregular primes (A000928) with irregularity index one. 12
 37, 59, 67, 101, 103, 131, 149, 233, 257, 263, 271, 283, 293, 307, 311, 347, 389, 401, 409, 421, 433, 461, 463, 523, 541, 557, 577, 593, 607, 613, 619, 653, 659, 677, 683, 727, 751, 757, 761, 773, 797, 811, 821, 827, 839, 877, 881, 887, 953, 971, 1061, 1091 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A prime p is regular if and only if the numerators of the Bernoulli numbers B_2, B_4, ..., B_{p-3} (A000367) are not divisible by p. In other words, irregular primes p dividing the numerator of B(2k) for a single k, 1<=k<(p-1)/2. LINKS T. D. Noe, Table of n, a(n) for n=1..10000 (from Buhler et al.) J. Buhler, R. Crandall, R. Ernvall, T. Metsankyla and M. A. Shokrollahi, Irregular Primes and Cyclotomic Invariants to 12 Million, J. Symbolic Computation 31, 2001, 89-96. Bernoulli numbers, irregularity index of primes MATHEMATICA Do[p = Prime[n]; k = 1; c = 0; While[ 2*k < p - 3, If[ Mod[ Numerator[ BernoulliB[2*k]], p] == 0, c++ ]; k++ ]; If[ c == 1, Print[p]], {n, 3, 200} ] CROSSREFS Cf. A000928, A000367, A060974, A060975 and A073277. Sequence in context: A109166 A090798 A000928 * A281290 A105460 A141851 Adjacent sequences: A073273 A073274 A073275 * A073277 A073278 A073279 KEYWORD nonn AUTHOR Robert G. Wilson v, Jul 22 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 26 13:41 EST 2024. Contains 370352 sequences. (Running on oeis4.)