Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jan 12 2019 20:45:19
%S -1,-1,0,-1,0,1,0,1,0,1,0,-1,0,-1,0,1,0,1,0,-1,0,1,0,1,0,-1,0,-1,0,-1,
%T 0,1,0,1,0,-1,0,1,0,1,0,1,0,-1,0,-1,0,1,0,-1,0,-1,0,1,0,1,0,-1,0,-1,0,
%U -1,0,1,0,1,0,-1,0,1,0,1,0,1,0,-1,0,-1,0,1,0,1,0,-1,0,1,0,1,0,-1,0,-1,0,-1,0,1,0,-1,0,-1
%N Let x(n) denote the number of 4's among the n first elements of the continued fraction for sum k>=0 1/2^(2^k) (A007400), y(n) the number of 6's and z(n) the number of 2's. Then a(n)=x(n)-y(n)-z(n)-1.
%C The positive sequence has a(n) = mod(A000120(A047849(n)),2) = mod(A000120(A078008(2n)),2) - _Paul Barry_, Jan 13 2005
%C Cosh(1) in 'reflected factorial' base is 1.10101010101010101010101010101010101010101010... - see A091337 for Sinh(1) (from _Robert G. Wilson v_, May 04 2005)
%H Antti Karttunen, <a href="/A073097/b073097.txt">Table of n, a(n) for n = 0..65537</a>
%F It seems that a(2k+1) = 0 for k>=1.
%F The positive sequence (assuming the pattern continues) has g.f. (1+x-x^2)/((1-x)(1-x^2)), with a(n)=(1-(1)^n)/2+0^n = mod((1+A001045(n+1))/2, 2) = mod(A005578, 2). The partial sums are A008619(n+1). - _Paul Barry_, Apr 28 2004
%o (PARI)
%o up_to = 65537;
%o A007400(n) = if(n<3, [0, 1, 4][n+1], if(n%8==1, A007400((n+1)/2), if(n%8==2, A007400((n+2)/2), [2, 0, 0, 2, 4, 4, 6, 4, 2, 0, 0, 2, 4, 6, 4, 4][(n%16)+1]))); \\ From A007400
%o A073097list(up_to) = { my(v=vector(up_to), x4=0, y6=0, z2=0, k); for(n=1, up_to, k=A007400(n); if(2==k,z2++,if(4==k,x4++,if(6==k,y6++))); v[n] = (x4-y6-z2-1)); (v); };
%o v073097 = A073097list(up_to);
%o A073097(n) = if(!n,-1,v073097[n]); \\ _Antti Karttunen_, Jan 12 2019
%Y Cf. A000120, A005578, A007400, A008619, A047849, A078008, A091337.
%K sign
%O 0,1
%A _Benoit Cloitre_, Aug 18 2002