The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A072970 Least k > 0 such that the last digit of k^n is the same as the last digit of n*k. 0
 1, 2, 5, 4, 5, 6, 5, 2, 5, 10, 1, 8, 5, 4, 5, 6, 5, 8, 2, 10, 1, 2, 5, 4, 5, 6, 5, 2, 5, 10, 1, 8, 5, 4, 5, 6, 5, 8, 2, 10, 1, 2, 5, 4, 5, 6, 5, 2, 5, 10, 1, 8, 5, 4, 5, 6, 5, 8, 2, 10, 1, 2, 5, 4, 5, 6, 5, 2, 5, 10, 1, 8, 5, 4, 5, 6, 5, 8, 2, 10, 1, 2, 5, 4, 5, 6, 5, 2, 5, 10, 1, 8, 5, 4, 5, 6, 5, 8, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Table of n, a(n) for n=1..99. FORMULA a(n) is a periodic sequence with period (1, 2, 5, 4, 5, 6, 5, 2, 5, 10, 1, 8, 5, 4, 5, 6, 5, 8, 2, 10) of length 20 a(n)=(1/3800)*{1809*(n mod 20) - 1421*[(n + 1) mod 20] + 1239*[(n + 2) mod 20] - 471*[(n + 3) mod 20] + 289*[(n + 4) mod 20] - 91*[(n + 5) mod 20] - 91*[(n + 6) mod 20] + 289*[(n + 7) mod 20] + 669*[(n + 8) mod 20] - 1231*[(n + 9) mod 20] + 1809*[(n + 10) mod 20] - 851*[(n + 11) mod 20] - 471*[(n + 12) mod 20] + 669*[(n + 13) mod 20] + 289*[(n + 14) mod 20] - 91*[(n + 15) mod 20] - 91*[(n + 16) mod 20] + 289*[(n + 17) mod 20] - 471*[(n + 18) mod 20] - 91*[(n + 19) mod 20]}, with n>=0 - Paolo P. Lava, Jun 11 2007 MATHEMATICA kld[n_]:=Module[{k=1}, While[PowerMod[k, n, 10]!=Mod[n*k, 10], k++]; k]; Array[kld, 100] (* Harvey P. Dale, Sep 08 2012 *) PROG (PARI) a(n)=if(n<0, 0, k=1; while(abs(k^n%10-(n*k)%10)>0, s++); s) CROSSREFS Sequence in context: A235052 A102066 A279404 * A276320 A011036 A086267 Adjacent sequences: A072967 A072968 A072969 * A072971 A072972 A072973 KEYWORD base,easy,nonn AUTHOR Benoit Cloitre, Aug 13 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 5 05:23 EDT 2023. Contains 363130 sequences. (Running on oeis4.)