login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072432
Numbers n for which there are exactly eight k such that n = k + reverse(k).
1
88, 808, 828, 848, 868, 888, 908, 928, 948, 968, 988, 1131, 1151, 1171, 1191, 1211, 1231, 1251, 1271, 1291, 1771, 2211, 2332, 3652, 4114, 5874, 8008, 9988, 12991, 15125, 16885, 17071, 17271, 17347, 17471, 17671, 17871, 18071, 18271, 18471
OFFSET
1,1
COMMENTS
Subsequence of A067030. First term is A072041(8).
Contains 8*10^k+8 for all k>=1. - Robert Israel, Jul 12 2019
EXAMPLE
88 = k + reverse(k) for k = 17, 26, 35, 44, 53, 62, 71, 80.
MAPLE
N:= 10^5:
revdigs:= proc(n) local L, i;
L:= convert(n, base, 10);
add(L[-i]*10^(i-1), i=1..nops(L))
end proc:
V:= Vector(N):
for x from 1 to N do
v:= x + revdigs(x);
if v <= N then V[v]:= V[v]+1 fi
od:
select(t -> V[t]=8, [$1..N]); # Robert Israel, Jul 12 2019
MATHEMATICA
krk8Q[n_]:=Count[Range[n-1], _?(#+FromDigits[Reverse[ IntegerDigits[#]]] ==n&)]==8; Select[Range[20000], krk8Q] (* Harvey P. Dale, Apr 02 2011 *)
PROG
(ARIBAS) var n, k, c, i, rev: integer; st, nst: string; end; m := 8; for n := 0 to 18800 do k := n div 2; c := 0; while k <= n and c < m + 1 do st := itoa(k); nst := ""; for i := 0 to length(st) - 1 do nst := concat(st[i], nst); end; rev := atoi(nst); if n = k + rev then inc(c); if k mod 10 <> 0 and k <> rev then inc(c); end; end; inc(k); end; if c = m then write(n, ", "); end; end;
CROSSREFS
Sequence in context: A297228 A137124 A194651 * A136951 A136933 A136958
KEYWORD
base,nonn
AUTHOR
Klaus Brockhaus, Jun 17 2002
EXTENSIONS
Offset changed by Robert Israel, Jul 12 2019
STATUS
approved