OFFSET
1,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000
FORMULA
A072351(n) = floor(1/2 + phi^ceiling((n*log(10) + (1/2)*log(5))/log(phi))/sqrt(5)). - Franklin T. Adams-Watters, May 27 2011
EXAMPLE
a(3)=144, as 144 is smallest 3-digit Fibonacci number.
MAPLE
F:= proc(n) option remember; local f;
f:= `if`(n=1, [1$2], F(n-1));
do f:= [f[2], f[1]+f[2]];
if length(f[1])<length(f[2]) then break fi
od; f
end:
a:= n-> `if`(n=1, 1, F(n-1)[2]):
seq(a(n), n=1..25); # Alois P. Heinz, Mar 10 2016
MATHEMATICA
a[n_] := Fibonacci[Ceiling[k /. FindRoot[Log[10, Fibonacci[k]] == n-1, {k, 1}]]]; Array[a, 20] (* Jean-François Alcover, Jan 18 2017 *)
With[{fbs=Fibonacci[Range[100]]}, Table[SelectFirst[fbs, IntegerLength[#]==n&], {n, 20}]] (* Harvey P. Dale, Dec 13 2024 *)
PROG
(PARI) A072351(n, phi=(sqrt(5)+1)/2)=round(phi^ceil((n*log(10)+log(5)/2)/log(phi))/sqrt(5)) \\ Franklin T. Adams-Watters, May 27 2011
(Python)
def A072351_list(n):
list = [1]
x, y = 1, 1
while len(list) < n:
if len(str(x)) < len(str(y)):
list.append(y)
x, y = y, x + y
return list
print(A072351_list(20)) # M. Eren Kesim, Jun 28 2021
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Shyam Sunder Gupta, Jul 17 2002
STATUS
approved