login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072230
a(n) = n! (mod n^2), that is, n factorial modulo n^2.
4
0, 2, 6, 8, 20, 0, 42, 0, 0, 0, 110, 0, 156, 0, 0, 0, 272, 0, 342, 0, 0, 0, 506, 0, 0, 0, 0, 0, 812, 0, 930, 0, 0, 0, 0, 0, 1332, 0, 0, 0, 1640, 0, 1806, 0, 0, 0, 2162, 0, 0, 0, 0, 0, 2756, 0, 0, 0, 0, 0, 3422, 0, 3660, 0, 0, 0, 0, 0, 4422, 0, 0, 0, 4970, 0, 5256, 0, 0, 0, 0, 0, 6162
OFFSET
1,2
COMMENTS
With the exception of n=4, if n is composite, a(n) = 0. If n is prime, a(n) = n*(n-1). For example, a(11) = 11*10 = 110, a(41) = 41*40 = 1640. - Gary Detlefs, May 01 2010
FORMULA
a(n) = A174530(n)*(A174530(n)-1) for n>=5. - Filip Zaludek, Oct 13 2016
MATHEMATICA
Table[Mod[n!, n^2], {n, 79}] (* or *)
Table[Which[n == 4, Mod[n!, n^2], PrimeQ@ n, n (n - 1), True, 0], {n, 79}] (* Michael De Vlieger, Oct 14 2016 *)
PROG
(PARI) a(n)=if(isprime(n), n*(n-1), if(n==4, 8, 0)) \\ Charles R Greathouse IV, Dec 14 2015
CROSSREFS
Sequence in context: A221316 A106164 A216205 * A028332 A183171 A124827
KEYWORD
nonn,easy
AUTHOR
Roman Stawski, Jul 05 2002
STATUS
approved