|
|
A072220
|
|
a(n)-th factorial is the smallest factorial containing exactly n 9's, or 0 if no such number exists.
|
|
8
|
|
|
12, 11, 21, 29, 34, 46, 36, 59, 79, 75, 0, 70, 82, 90, 95, 97, 112, 89, 105, 96, 134, 130, 127, 165, 142, 149, 144, 145, 161, 163, 182, 189, 160, 178, 139, 180, 206, 192, 224, 214, 188, 215, 226, 207, 218, 267, 283, 261, 268, 262, 240, 280, 234, 285, 343, 277
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
It is conjectured that a(11) = 0 since no factorial < 10000 contains exactly eleven nines.
|
|
LINKS
|
Table of n, a(n) for n=1..56.
|
|
EXAMPLE
|
a(2) = 11 since 11! = 39916800 contains exactly two 9's.
|
|
MATHEMATICA
|
Do[k = 1; While[ Count[IntegerDigits[k! ], 9] != n, k++ ]; Print[k], {n, 1, 60}]
|
|
PROG
|
(Python)
def a(n, multiple_limit=300):
fk, limit = 1, multiple_limit*n
for k in range(1, limit+1):
fk *= k
if str(fk).count("9") == n: return k
return 0
print([a(n) for n in range(1, 57)]) # Michael S. Branicky, Dec 11 2021
|
|
CROSSREFS
|
Cf. A072232, A072208, A072204, A072200, A072199, A072178, A072177, A072163, A072124.
Sequence in context: A358497 A019330 A086045 * A171986 A254717 A195748
Adjacent sequences: A072217 A072218 A072219 * A072221 A072222 A072223
|
|
KEYWORD
|
base,nonn
|
|
AUTHOR
|
Shyam Sunder Gupta, Jul 30 2002
|
|
EXTENSIONS
|
Edited and extended by Robert G. Wilson v, Jul 31 2002
|
|
STATUS
|
approved
|
|
|
|