OFFSET
1,1
COMMENTS
According to Dirichlet's theorem primes of form prime(n)+k*n exist for all n, as gcd(n, prime(n))=1.
Nontrivial least prime == prime(n) (mod n).
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
EXAMPLE
n=3, prime(3)=5: 5+1*3=8 is not prime, but 5+2*3=11, therefore a(3)=11 and A072064(3)=2.
MAPLE
f:= proc(n) local p, k, k0;
p:= ithprime(n);
if n::odd then k0:= 2 else k0:= 1 fi;
for k from k0 by k0 do
if isprime(p+k*n) then return p+k*n fi
od:
end proc:
f(1):= 3:
map(f, [$1..100]); # Robert Israel, Nov 27 2023
MATHEMATICA
sp[n_]:=Module[{p=Prime[n], k=1}, While[!PrimeQ[p+k*n], k++]; p+k*n]; Array[ sp, 60] (* Harvey P. Dale, Apr 19 2019 *)
PROG
(PARI) a072063(n) = {my (p=prime(n), j); for (k=1, oo, if(isprime(j=p+k*n), return(j)))}; \\ Hugo Pfoertner, Nov 27 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jun 12 2002
STATUS
approved