login
A071864
Nonprime n such that the number of elements in the continued fraction for Sum_{d|n} 1/d equals tau(n), the number of divisors of n.
2
1, 4, 9, 14, 15, 21, 25, 49, 51, 55, 57, 63, 95, 98, 99, 115, 116, 121, 147, 161, 169, 172, 175, 188, 195, 203, 236, 244, 245, 247, 265, 284, 287, 289, 297, 299, 322, 328, 329, 351, 356, 361, 363, 370, 371, 374, 387, 406, 412, 413, 418, 423, 425, 437, 465, 488
OFFSET
1,2
COMMENTS
If p is prime p^2 is in the sequence since the continued fraction for Sum_{d|n} 1/d is [1, p-1, p+1] and there are 3 divisors for p^2.
LINKS
MATHEMATICA
aQ[n_] := ! PrimeQ[n] && Length@ContinuedFraction[DivisorSigma[1, n]/n] == DivisorSigma[0, n]; Select[Range[488], aQ] (* Amiram Eldar, Aug 30 2019 *)
PROG
(PARI) for(n=1, 1000, if(length(contfrac(sumdiv(n, d, 1/d)))==numdiv(n)*(1-isprime(n)), print1(n, ", ")))
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Jun 09 2002
STATUS
approved