login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071553
Least x greater than 1 such that x^n == 1 (mod i) for each i=1,2,3,...,n.
0
2, 3, 7, 5, 61, 11, 421, 13, 121, 71, 27721, 23, 360361, 4159, 841, 307, 12252241, 1121, 232792561, 2393, 4398241, 483209, 5354228881, 4093, 1460244241, 11232649, 61934401, 7598557, 2329089562801, 406639, 72201776446801, 6998993
OFFSET
1,1
COMMENTS
Let m(n) = A003418(n) = lcm(1,2,...,n). Then a(n) <= m(n)+1, with equality if and only if n=1 or n is prime. - David W. Wilson, Vladeta Jovovic, Dean Hickerson
MATHEMATICA
<<NumberTheory`NumberTheoryFunctions` (* Load ChineseRemainder function, needed below. *)
f[n_, m_] := Select[Range[0, m-1], PowerMod[ #, n, m]==1&]; a[1]=2; a[n_] := Module[{lcm, pe, i, m, s, j, x}, lcm=LCM@@Range[n]; pe=Sort[Select[Range[n], Length[FactorInteger[ # ]]==1&&#*FactorInteger[ # ][[1, 1]]>n&], Length[f[n, #1]]/#1<Length[f[n, #2]]/#2&]; For[i=1; m=1; s={0}, i<=Length[pe], i++, s=Union@@Outer[ChineseRemainder[{#1, #2}, {m, pe[[i]]}]&, s, f[n, pe[[i]]]]; m*=pe[[i]]; For[j=2, j<=Length[s], j++, If[PowerMod[x=s[[j]], n, lcm]==1, Return[x]]]; If[PowerMod[1+m, n, lcm]==1, Return[1+m]]; ]]; (* f[n, m] is list of x with x^n==1 (mod m), 0 <= x < m *)
a[1] = 2; a[n_ /; n <= 10] := (s = 2; While[ Sum[ Sign[ Mod[s^n - 1, i]], {i, 1, n}] > 0, s++]; s); a[n_?PrimeQ] := LCM @@ Range[n] + 1; a[n_] := a[n] = (km = If[n <= 24, 6, 7]; redu = Reduce[ And @@ Table[ Mod[x^n, n - k] == 1, {k, 0, km}], x, Integers]; candidates = Join @@ Table[ Sort[ List @@ (redu /. C[1] -> c)[[All, 2]]], {c, 0, n}]; First[ Select[ candidates, # > 1 && And @@ Table[ Mod[ #^n, k] == 1, {k, 2, n - km - 1}] & ]]); Table[ Print[a[n]]; a[n], {n, 1, 32}] (* Jean-François Alcover, Jan 13 2012, after PARI for n <= 10 *)
PROG
(PARI) for(n=1, 12, s=2; while(sum(i=1, n, sign((s^n-1)%i))>0, s++); print1(s, ", "))
CROSSREFS
Sequence in context: A069587 A059843 A092927 * A021812 A155891 A234026
KEYWORD
nonn,nice
AUTHOR
Benoit Cloitre, May 30 2002
EXTENSIONS
Edited by Robert G. Wilson v, Jun 07 2002
More terms from Don Reble, Jun 07 2002
Corrected and extended by Vladeta Jovovic, Jun 09 2002
Corrected and extended by Dean Hickerson, Jun 13 2002
STATUS
approved