login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071264
Expansion of (1+x*C^4)*C^3, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108.
2
1, 4, 16, 63, 244, 934, 3549, 13428, 50694, 191216, 721259, 2722073, 10282610, 38886330, 147243585, 558279000, 2119599270, 8058312360, 30677134380, 116937340494, 446317079712, 1705563385196, 6525404350306, 24994411455928
OFFSET
0,2
LINKS
FORMULA
Conjecture: D-finite with recurrence (n+6) *(8587*n^2 +62958*n +61667) *a(n) +(8587*n^3 -377960*n^2 -2268967*n -1091596) *a(n-1) -2 *(2*n-1) *(42935*n^2 -14497*n -123334) *a(n-2)=0. - R. J. Mathar, Dec 10 2015
MAPLE
g := (1-sqrt(1-4*x))/2/x ;
(1+x*g^4)*g^3 ;
taylor(%, x=0, 40) ;
gfun[seriestolist](%) ; # R. J. Mathar, Aug 14 2024
MATHEMATICA
CoefficientList[Series[(1-7*x+14*x^2-6*x^3-3*x^4 -(1-5*x+6*x^2-x^4 )*Sqrt[1-4*x])/(2*x^6), {x, 0, 30}], x] (* G. C. Greubel, Sep 12 2024 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 30);
p:= func< x | (1 -7*x +14*x^2 -6*x^3 -3*x^4 -(1 -5*x +6*x^2 -x^4)*Sqrt(1-4*x))/2 >;
Coefficients(R!( p(x) )); // G. C. Greubel, Sep 12 2024
(SageMath)
def p(x): return (1-7*x+14*x^2-6*x^3-3*x^4 -(1-5*x+6*x^2 -x^4)*sqrt(1-4*x))/(2*x^6)
def A071264_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( p(x) ).list()
A071264_list(30) # G. C. Greubel, Sep 12 2024
CROSSREFS
Sequence in context: A034542 A289594 A333071 * A077822 A257838 A099503
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 06 2002
STATUS
approved