|
|
A070971
|
|
a(n) is the smallest positive integer m for which A070194(m) (i.e., the maximal gap in {k|gcd(k,m) = 1, 1 <= k <= m-1}) is n.
|
|
4
|
|
|
3, 4, 15, 6, 105, 30, 1155, 770, 36465, 210, 15015, 6006, 255255, 2310, 8580495, 102102, 4849845, 72930, 20056049013, 74364290, 5898837945, 30030, 3234846615, 881790, 195282582495, 510510, 218257003965, 20281170, 100280245065, 17160990, 934482952262145, 6614136163635
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
a(n) is the least x such that maximal gap in RRS of x equals n: a(n) = max{x: A070194(x) = n}
For n > 2, same as A128759, which gives the least k such that the Jacobsthal function A048669(k) equals n. See A128759 for more comments. - T. D. Noe, Mar 28 2007
|
|
LINKS
|
Table of n, a(n) for n=1..32.
|
|
EXAMPLE
|
A070194 begins with 1,2,1,4,... with offset 3, so a(4)=6.
|
|
MATHEMATICA
|
gw[x_] := Table[GCD[w, x], {w, 1, x}] rrs[x_] := Flatten[Position[gw[x], 1]] dr[x_] := Delete[RotateLeft[rrs[x]]-rrs[x], -1] t=Table[0, {25}]; Do[s=Max[dr[n]]; If[s<26&&t[[s]]==0, t[[s]]=n], {n, 3, 10000}]; t (* Labos Elemer, Oct 09 2002 *)
|
|
CROSSREFS
|
Cf. A000010, A061498, A070194, A071194.
Sequence in context: A343935 A280685 A076365 * A338438 A130113 A004735
Adjacent sequences: A070968 A070969 A070970 * A070972 A070973 A070974
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
John W. Layman, May 17 2002
|
|
EXTENSIONS
|
a(13)-a(18) from T. D. Noe, Mar 28 2007
a(19) onwards from Don Reble, Oct 17 2013
|
|
STATUS
|
approved
|
|
|
|