login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070871
a(n) = A002487(n) * A002487(n+1) (Conway's alimentary function).
10
1, 2, 2, 3, 6, 6, 3, 4, 12, 15, 10, 10, 15, 12, 4, 5, 20, 28, 21, 24, 40, 35, 14, 14, 35, 40, 24, 21, 28, 20, 5, 6, 30, 45, 36, 44, 77, 70, 30, 33, 88, 104, 65, 60, 84, 63, 18, 18, 63, 84, 60, 65, 104, 88, 33, 30, 70, 77, 44, 36, 45, 30, 6, 7, 42, 66
OFFSET
1,2
LINKS
Robert G. Wilson v, Plot of first 4096 terms
FORMULA
Sum of reciprocals of k-th "chunk" (between two entries k) = 1 (for example for the third chunk, 1/3 + 1/6 + 1/6 + 1/3 = 1).
MAPLE
b:= proc(n) option remember; `if`(n<2, n,
(q-> b(q)+(n-2*q)*b(n-q))(iquo(n, 2)))
end:
a:= n-> b(n)*b(n+1):
seq(a(n), n=1..100); # Alois P. Heinz, Feb 11 2021
MATHEMATICA
a[0] = 1; a[n_] := If[ OddQ[n], a[n/2 - 1/2], a[n/2] + a[n/2 - 1]]; Table[ a[n - 1]*a[n], {n, 1, 70}]
PROG
(Python)
def a002487(n): return n if n<2 else a002487(n/2) if n%2==0 else a002487((n - 1)/2) + a002487((n + 1)/2)
def a(n): return a002487(n)*a002487(n + 1) # Indranil Ghosh, Jun 08 2017
(Python)
from functools import reduce
def A070871(n): return sum(reduce(lambda x, y:(x[0], x[0]+x[1]) if int(y) else (x[0]+x[1], x[1]), bin(n)[-1:2:-1], (1, 0)))*sum(reduce(lambda x, y:(x[0], x[0]+x[1]) if int(y) else (x[0]+x[1], x[1]), bin(n+1)[-1:2:-1], (1, 0))) # Chai Wah Wu, May 05 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 19 2002
STATUS
approved