login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = phi(gpf(n)) - gpf(phi(n)) = A000010(A006530(n)) - A006530(A000010(n)).
14

%I #22 Aug 17 2023 22:35:37

%S 0,-1,2,0,3,-1,-1,2,5,0,9,3,2,-1,14,-1,15,2,3,5,11,0,-1,9,-1,3,21,2,

%T 25,-1,5,14,3,-1,33,15,9,2,35,3,35,5,1,11,23,0,-1,-1,14,9,39,-1,5,3,

%U 15,21,29,2,55,25,3,-1,9,5,55,14,11,3,63,-1,69,33,-1,15,5,9,65,2,-1,35,41,3,14,35,21,5,77,1,9,11,25,23,15,0,93,-1,5

%N a(n) = phi(gpf(n)) - gpf(phi(n)) = A000010(A006530(n)) - A006530(A000010(n)).

%C Value of commutator[A000010, A006530] at n.

%H Michael De Vlieger, <a href="/A070812/b070812.txt">Table of n, a(n) for n = 3..10000</a>

%H Michael De Vlieger, <a href="/A070812/a070812.png">Log log scatterplot of a(n)+2</a>, n = 3..10^5.

%F a(n) = A070777(n) - A068211(n).

%e Cases of n when a(n) = 1, -1, 2 or 0 are listed in A070002, A070003, A070004, A007283 respectively. Further regular solutions: if a(n)=3, then n=7k, where k has prime divisors < 7; if a(n)=5, then n=11k, where k has no prime divisors >=11; if a(n)=25, then mostly (not always!) n=31k ...

%t pf[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] Table[EulerPhi[pf[u]]-pf[EulerPhi[u]], {u, 3, 128}]

%o (PARI) gpf(n)=my(f=factor(n)[,1]);f[#f]

%o a(n)=gpf(n)-gpf(eulerphi(n))-1 \\ _Charles R Greathouse IV_, Feb 19 2013

%Y Cf. A000010, A006530, A070777, A068211, A070002, A070003, A070004, A007283.

%K sign

%O 3,3

%A _Labos Elemer_, May 09 2002