login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070543
Triangular array read by rows: T(n,k) = number of k-dimensional isotropic subspaces of Spin(2n+1,C), n >= 1, 1 <= k <= n.
2
1, 3, 3, 5, 7, 6, 7, 11, 12, 10, 9, 15, 18, 18, 15, 11, 19, 24, 26, 25, 21, 13, 23, 30, 34, 35, 33, 28, 15, 27, 36, 42, 45, 45, 42, 36, 17, 31, 42, 50, 55, 57, 56, 52, 45, 19, 35, 48, 58, 65, 69, 70, 68, 63, 55, 21, 39, 54, 66, 75, 81, 84, 84, 81, 75, 66, 23, 43, 60, 74, 85, 93
OFFSET
1,2
LINKS
FORMULA
T(n, k) = k*(k+1)/2 + 2*k*(n-k) if 0 < k <= n.
G.f.: (1+x-2*x^2*y)/((1-x)^2*(1-x*y)^3). - Vladeta Jovovic, Mar 05 2004
T(n, k) = A141419(2*n-k, k). - Peter Munn, Aug 21 2019
EXAMPLE
Rows:
1;
3, 3;
5, 7, 6;
7, 11, 12, 10;
9, 15, 18, 18, 15;
11, 19, 24, 26, 25, 21;
...
MAPLE
T:=(n, k) -> k*(k+1)/2+2*k*(n-k); r:=n->[seq(T(n, k), k=1..n)]; for r from 1 to 12 do lprint(r(n)); od: # N. J. A. Sloane, Aug 21 2019
MATHEMATICA
nmax = 12; t[n_, k_] := If[k < 1 || k > n, 0, k*(k+1)/2 + 2*k*(n-k)]; Flatten[ Table[t[n , k], {n, 1, nmax}, {k, 1, n}]] (* Jean-François Alcover, Oct 19 2011, after PARI *)
PROG
(PARI) {T(n, k) = if( k<1 || k>n, 0, k * (k + 1) / 2 + 2 * k * (n - k))}
(Magma) [k*(k+1 + 4*(n-k))/2: k in [1..n], n in [1..12]]; // G. C. Greubel, Sep 05 2019
(Sage) [[k*(k+1 + 4*(n-k))/2 for k in (1..n)] for n in (1..12)] # G. C. Greubel, Sep 05 2019
(GAP) Flat(List([1..12], n-> List([1..n], k-> k*(k+1 + 4*(n-k))/2 ))); # G. C. Greubel, Sep 05 2019
CROSSREFS
Cf. A141419.
Sequence in context: A134855 A335045 A110246 * A377419 A342194 A196372
KEYWORD
nonn,tabl,easy,nice
AUTHOR
Michael Somos, Apr 28 2002
EXTENSIONS
Offset changed to 1 by N. J. A. Sloane, Aug 21 2019
STATUS
approved