login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070485
a(n) = n^3 mod 23.
1
0, 1, 8, 4, 18, 10, 9, 21, 6, 16, 11, 20, 3, 12, 7, 17, 2, 14, 13, 5, 19, 15, 22, 0, 1, 8, 4, 18, 10, 9, 21, 6, 16, 11, 20, 3, 12, 7, 17, 2, 14, 13, 5, 19, 15, 22, 0, 1, 8, 4, 18, 10, 9, 21, 6, 16, 11, 20, 3, 12, 7, 17, 2, 14, 13, 5, 19, 15, 22, 0, 1, 8, 4, 18, 10, 9, 21, 6, 16, 11, 20, 3
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
FORMULA
From G. C. Greubel, Mar 28 2016: (Start)
a(n) = a(n-23).
G.f.: (-x -8*x^2 -4*x^3 -18*x^4 -10*x^5 -9*x^6 -21*x^7 -6*x^8 -16*x^9 -11* x^10 -20*x^11 -3*x^12 -12*x^13 -7*x^14 -17*x^15 -2*x^16 -14*x^17 -13*x^18 -5*x^19 -19*x^20 -15*x^21 -22*x^22)/(-1 + x^23). (End)
MATHEMATICA
Table[Mod[n^3, 23], {n, 0, 100}] (* Vincenzo Librandi, Jun 19 2014 *)
PowerMod[Range[0, 90], 3, 23] (* G. C. Greubel, Mar 28 2016 *)
PROG
(Sage) [power_mod(n, 3, 23 )for n in range(0, 82)] #Zerinvary Lajos, Oct 29 2009
(Magma) [n^3 mod 23: n in [0..80]]; // Vincenzo Librandi, Jun 19 2014
(PARI) a(n)=n^3%23 \\ Charles R Greathouse IV, Apr 06 2016
CROSSREFS
Cf. A008960.
Sequence in context: A040059 A178603 A018810 * A248293 A151726 A070290
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 12 2002
STATUS
approved