Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Dec 14 2023 05:25:32
%S 1,3,9,5,4,1,3,9,5,4,1,3,9,5,4,1,3,9,5,4,1,3,9,5,4,1,3,9,5,4,1,3,9,5,
%T 4,1,3,9,5,4,1,3,9,5,4,1,3,9,5,4,1,3,9,5,4,1,3,9,5,4,1,3,9,5,4,1,3,9,
%U 5,4,1,3,9,5,4,1,3,9,5,4,1,3,9,5,4,1,3,9,5,4,1,3,9
%N a(n) = 3^n mod 11: Repeat (1, 3, 9, 5, 4), period 5.
%C Simple continued fraction expansion of 13/24 + sqrt(8761)/120 = 1.3216684472... - _R. J. Mathar_, Mar 08 2012
%H G. C. Greubel, <a href="/A070341/b070341.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 1).
%F From _R. J. Mathar_, Apr 13 2010: (Start)
%F a(n) = a(n-5).
%F G.f.: (1+3*x+9*x^2+5*x^3+4*x^4)/ ((1-x) * (1+x+x^2+x^3+x^4)). (End)
%t PowerMod[3,Range[0,100],11] (* or *) PadRight[{},100,{1,3,9,5,4}] (* _Harvey P. Dale_, Feb 05 2012 *)
%o (Sage) [power_mod(3, n, 11)for n in range(0, 93)] # _Zerinvary Lajos_, Nov 24 2009
%o (PARI) a(n)=lift(Mod(3,11)^n)
%o (PARI) a(n)=[1, 3, 9, 5, 4][n%5+1] \\ _M. F. Hasler_, Mar 04 2011
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, May 12 2002