login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A070326 Upper triangular array giving for each (x,y) the minimum modulus m such that x^3+y^3 is not congruent to a cube (mod m). 0
4, 7, 7, 8, 13, 4, 7, 7, 19, 7, 4, 9, 7, 13, 4, 13, 13, 7, 13, 7, 7, 9, 19, 4, 9, 8, 37, 4, 7, 7, 13, 7, 9, 19, 13, 7, 4, 7, 8, 7, 4, 13, 13, 7, 4, 9, 13, 7, 9, 7, 7, 9, 13, 31, 7, 7, 7, 4, 7, 9, 31, 4, 7, 7, 13, 4, 31, 13, 7, 13, 7, 7, 13, 13, 19, 7, 13, 7, 4, 25, 7, 9, 4, 7, 8, 27, 4, 7, 19 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The first few values of n and their corresponding values of x and y are (n,x,y) = (1,1,1), (2,2,1), (3,2,2), (4,3,1), (5,3,2), (6,3,3).

The modulus a(n) can be used to verify that x^3+y^3 is not a cube, so does not violate Fermat's Last Theorem for the exponent 3.

LINKS

Table of n, a(n) for n=1..89.

EXAMPLE

a(3)=7: n=3 corresponds to x=y=2; 2^3+2^3=16, which is not congruent to a cube (mod 7), but is congruent to a cube (mod m) for every m from 1 to 6.

MATHEMATICA

cubes[m_] := cubes[m]=Union[Table[Mod[n^3, m], {n, 0, m-1}]]; a[x_, y_] := For[m=1, True, m++, If[ !MemberQ[cubes[m], Mod[x^3+y^3, m]], Return[m]]]; Flatten[Table[a[x, y], {x, 1, 15}, {y, 1, x}]]

CROSSREFS

Sequence in context: A277577 A011222 A157298 * A103711 A199435 A257898

Adjacent sequences:  A070323 A070324 A070325 * A070327 A070328 A070329

KEYWORD

easy,nonn,tabl

AUTHOR

Gottfried Helms, May 11 2002

EXTENSIONS

Edited by Dean Hickerson, Jun 06 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 09:32 EST 2019. Contains 329862 sequences. (Running on oeis4.)