login
A069932
Number of k, 1<=k<=n, such that phi(k) divides n.
6
1, 2, 2, 4, 2, 5, 2, 7, 2, 5, 2, 11, 2, 5, 2, 11, 2, 9, 2, 10, 2, 5, 2, 19, 2, 5, 2, 9, 2, 11, 2, 16, 2, 5, 2, 20, 2, 5, 2, 18, 2, 9, 2, 10, 2, 5, 2, 32, 2, 7, 2, 9, 2, 13, 2, 15, 2, 5, 2, 26, 2, 5, 2, 22, 2, 11, 2, 9, 2, 7, 2, 38, 2, 5, 2, 9, 2, 9, 2, 30, 2, 5, 2, 23, 2, 5, 2, 17, 2, 17, 2, 10, 2, 5
OFFSET
1,2
COMMENTS
Unlike A070633, this sequence does not give the number of all integers of the form phi(k) dividing n (for some n and some m > n, phi(m) divides n).
LINKS
FORMULA
Asymptotically (still conjectured): Sum_{k=1..n} a(k) = C*n*log(n) + o(n*log(n)) with C = 1.5...
G.f.: Sum_{k>=1} 1/(1-x^phi(k)).
a(n) <= A070633(n). - Antti Karttunen, Sep 10 2018
a(n) = Sum_{k=1..n} (1 - ceiling(n/phi(k)) + floor(n/phi(k))). - Wesley Ivan Hurt, Apr 21 2023
MATHEMATICA
a[n_] := Boole[ Divisible[n, EulerPhi[#]]] & /@ Range[n] // Total; Table[a[n], {n, 1, 94}] (* Jean-François Alcover, May 23 2013 *)
PROG
(PARI) for(n=1, 150, print1(sum(i=1, n, if(n%eulerphi(i), 0, 1)), ", "))
(PARI) a(n)=if(n<1, 0, polcoeff(sum(k=1, n, 1/(1-x^eulerphi(k)), x*O(x^n)), n))
(PARI) A069932(n) = sum(k=1, n, !(n%eulerphi(k))); \\ Antti Karttunen, Sep 10 2018
(PARI) a(n) = sumdiv(n, d, #select(x -> x<=n, invphi(d))); \\ Amiram Eldar, Nov 29 2024, using Max Alekseyev's invphi.gp
CROSSREFS
Sequence in context: A005127 A140773 A133911 * A056148 A304442 A057567
KEYWORD
easy,nonn,changed
AUTHOR
Benoit Cloitre, May 05 2002
STATUS
approved