login
Let x = 1.757739951145463... be smallest real number that satisfies gcd(floor(x^m),m)=1 for all integers m>0; sequence gives floor(x^n).
0

%I #3 Mar 30 2012 18:36:31

%S 1,3,5,9,16,29,51,91,160,281,494,869,1529,2687,4724,8303,14595,25655,

%T 45095,79267,139330,244907,430483,756677,1330042,2337869,4109366,

%U 7223197,12696502,22317149,39227744,68952173,121199990,213038065

%N Let x = 1.757739951145463... be smallest real number that satisfies gcd(floor(x^m),m)=1 for all integers m>0; sequence gives floor(x^n).

%C If some z satisfies the condition gcd(floor(z^n),n)=1, then all positive powers of z also satisfy the condition. There are an infinite number of reals satisfying this condition; the value given here is the smallest such solution.

%F Floor(x^n), x=1.757739951145463 approximately.

%e gcd(floor(x^10),10) = gcd(281,10) = 1; the floor of even powers of x is always odd.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Apr 29 2002