

A069818


Let x = 1.757739951145463... be smallest real number that satisfies gcd(floor(x^m),m)=1 for all integers m>0; sequence gives floor(x^n).


0



1, 3, 5, 9, 16, 29, 51, 91, 160, 281, 494, 869, 1529, 2687, 4724, 8303, 14595, 25655, 45095, 79267, 139330, 244907, 430483, 756677, 1330042, 2337869, 4109366, 7223197, 12696502, 22317149, 39227744, 68952173, 121199990, 213038065
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

If some z satisfies the condition gcd(floor(z^n),n)=1, then all positive powers of z also satisfy the condition. There are an infinite number of reals satisfying this condition; the value given here is the smallest such solution.


LINKS



FORMULA

Floor(x^n), x=1.757739951145463 approximately.


EXAMPLE

gcd(floor(x^10),10) = gcd(281,10) = 1; the floor of even powers of x is always odd.


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



