OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Tsz Ho Chan, The Diophantine equation b (b+1) (b+2) = t a (a + 1) (a + 2) and gap principle, arXiv preprint (2024). arXiv:2408.01306 [math.NT]
FORMULA
Chan proves that a(n) >> n (log n)^(1/6)/(log log n)^(1/3). - Charles R Greathouse IV, Aug 13 2024
Note that a(n) <= n^2 + n - 2 and that if n is odd, a(n) <= (n^2 + n - 4)/2. - Charles R Greathouse IV, Aug 13 2024
MATHEMATICA
stn[n_]:=Module[{i=n+1, tn=(n(n+1)(n+2))/6}, While[!Divisible[(i(i+1) (i+2))/6, tn], i++]; i]; stn/@Range[70] (* Harvey P. Dale, Apr 11 2011 *)
PROG
(PARI) for(s=1, 80, n=s+1; while(frac(n*(n+1)*(n+2)/(s*(s+1)*(s+2)))>0, n++); print1(n, ", "); )
(PARI) a(n)=my(t=n*(n+1)*(n+2)); for(k=n+1, oo, if(k*(k+1)*(k+2)%t==0, return(k))) \\ Charles R Greathouse IV, Aug 13 2024
(PARI) a(n)=if(n==1, return(2)); my(t=n*(n+1)*(n+2), p=vecmax(apply(k->vecmax(factor(k)[, 1]), [n..n+2])), start=((n+2)\p+1)*p-2); for(k=max(n+1, start-p+1), start-p+2, if(k*(k+1)*(k+2)%t==0, return(k))); forstep(k=start, oo, [1, 1, p-2], if(k*(k+1)*(k+2)%t==0, return(k))) \\ Charles R Greathouse IV, Aug 13 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, May 01 2002
STATUS
approved