login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069753
Smallest k>n such that the tetrahedral number n*(n+1)*(n+2)/6 divides the tetrahedral number k*(k+1)*(k+2)/6.
1
2, 4, 4, 8, 13, 14, 26, 54, 43, 20, 64, 26, 63, 48, 118, 270, 151, 170, 55, 54, 229, 207, 274, 350, 323, 350, 376, 174, 433, 928, 494, 1054, 119, 440, 259, 664, 701, 208, 778, 328, 859, 516, 944, 504, 1033, 2160, 1126, 2350, 1223, 1274, 1324, 1376, 1429, 350
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Tsz Ho Chan, The Diophantine equation b (b+1) (b+2) = t a (a + 1) (a + 2) and gap principle, arXiv preprint (2024). arXiv:2408.01306 [math.NT]
FORMULA
Chan proves that a(n) >> n (log n)^(1/6)/(log log n)^(1/3). - Charles R Greathouse IV, Aug 13 2024
Note that a(n) <= n^2 + n - 2 and that if n is odd, a(n) <= (n^2 + n - 4)/2. - Charles R Greathouse IV, Aug 13 2024
MATHEMATICA
stn[n_]:=Module[{i=n+1, tn=(n(n+1)(n+2))/6}, While[!Divisible[(i(i+1) (i+2))/6, tn], i++]; i]; stn/@Range[70] (* Harvey P. Dale, Apr 11 2011 *)
PROG
(PARI) for(s=1, 80, n=s+1; while(frac(n*(n+1)*(n+2)/(s*(s+1)*(s+2)))>0, n++); print1(n, ", "); )
(PARI) a(n)=my(t=n*(n+1)*(n+2)); for(k=n+1, oo, if(k*(k+1)*(k+2)%t==0, return(k))) \\ Charles R Greathouse IV, Aug 13 2024
(PARI) a(n)=if(n==1, return(2)); my(t=n*(n+1)*(n+2), p=vecmax(apply(k->vecmax(factor(k)[, 1]), [n..n+2])), start=((n+2)\p+1)*p-2); for(k=max(n+1, start-p+1), start-p+2, if(k*(k+1)*(k+2)%t==0, return(k))); forstep(k=start, oo, [1, 1, p-2], if(k*(k+1)*(k+2)%t==0, return(k))) \\ Charles R Greathouse IV, Aug 13 2024
CROSSREFS
Sequence in context: A335974 A047073 A308528 * A181245 A216950 A240364
KEYWORD
nonn
AUTHOR
Benoit Cloitre, May 01 2002
STATUS
approved