login
A069715
GCD of digits of n is 1.
6
1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25, 27, 29, 31, 32, 34, 35, 37, 38, 41, 43, 45, 47, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 65, 67, 71, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 87, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108
OFFSET
1,2
FORMULA
A052423(a(n)) = 1. - Reinhard Zumkeller, Apr 14 2014
a(n) ~ n. In fact a(n) = n + O(n^(log 5/log 10)). - Charles R Greathouse IV, Nov 01 2014
EXAMPLE
All numbers with at least one digit equal to 1 are here.
MATHEMATICA
Do[s=Apply[GCD, IntegerDigits[n]]; If[Equal[s, 1], Print[n]], {n, 1, 256}]
PROG
(Haskell)
a069715 n = a069715_list !! (n-1)
a069715_list = filter ((== 1) . a052423) [1..]
-- Reinhard Zumkeller, Apr 14 2014
(PARI) is(n)=gcd(digits(n))==1 \\ Charles R Greathouse IV, Nov 01 2014
CROSSREFS
Cf. A011531 (subsequence), A240913 (subsequence).
Sequence in context: A326734 A256556 A063662 * A248499 A008716 A011531
KEYWORD
base,easy,nonn
AUTHOR
Labos Elemer, Apr 02 2002
STATUS
approved