login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069548
Primes of the form sum 6d/(2 + mu(d)) for some k and all d dividing k.
1
2, 47, 107, 191, 281, 431, 587, 593, 661, 971, 1097, 1213, 1217, 2357, 2549, 2699, 5807, 5869, 6469, 6911, 7039, 7873, 8423, 8747, 10799, 11261, 11821, 11981, 14867, 15551, 16411, 16427, 18223, 19937, 22877, 22961, 25153, 28573, 29531, 30467
OFFSET
1,1
COMMENTS
mu is the Moebius mu function, see A008683.
The function is the sum of 3d or -d (mu(d) -1 or 1, resp.) over the squarefree divisors d of n, plus 3*sigma(n). As a result, for n > 1, the squarefree part is even, and thus n generates odd numbers only when 3*sigma(n) is odd. This happens only when n is a square or twice a square, as conjectured by Alonso Del Arte. - Charles R Greathouse IV, Feb 18 2011
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
Primes of the form sum_{d|k} 6d/(2 + mu(d)) for some k.
Primes of the form 3*sigma(n) + sum_{d|k, d squarefree} d(6/(2 + mu(d)) - 3) for some k. - Charles R Greathouse IV, Feb 18 2011
EXAMPLE
For k = 9, the divisors d are 1, 3 and 9. We see that 6 * 1 / (2 + mu(1)) = 2, that 6 * 3 / (2 + mu(3)) = 18 and that 6 * 9 / (2 + mu(9)) = 27. Then, 2 + 18 + 27 = 47, which is prime, so it is in the list.
MATHEMATICA
cloitreMu[k_] := Plus@@Table[6Divisors[k][[d]] / (2 + MoebiusMu[Divisors[k][[d]]]), {d, DivisorSigma[0, k]}]; Take[Union[Select[Table[cloitreMu[n], {n, 10^5}], PrimeQ]], 40] (* Alonso del Arte, Feb 17 2011 *)
PROG
(PARI) f(n)=sumdiv(n, d, 6*d/(2+moebius(d)))
list(lim)=my(v=List(), t); for(n=1, sqrtint(lim\3), if(isprime(t=f(n^2)) && t<=lim, listput(v, t))); for(n=1, sqrtint(lim\8), if(isprime(t=f(2*n^2)) && t<=lim, listput(v, t))); Set(v) \\ Charles R Greathouse IV, Feb 18 2011; revised Sep 26 2015
CROSSREFS
Sequence in context: A248862 A118104 A107211 * A065044 A142313 A264776
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Apr 18, 2002
STATUS
approved