The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A069201 a(n) = Sum_{k=1..n} mu(k)^2 * 2^omega(k) where omega(k) is the number of distinct primes in the factorization of k. 4
 1, 3, 5, 5, 7, 11, 13, 13, 13, 17, 19, 19, 21, 25, 29, 29, 31, 31, 33, 33, 37, 41, 43, 43, 43, 47, 47, 47, 49, 57, 59, 59, 63, 67, 71, 71, 73, 77, 81, 81, 83, 91, 93, 93, 93, 97, 99, 99, 99, 99, 103, 103, 105, 105, 109, 109, 113, 117, 119, 119, 121, 125, 125, 125, 129, 137 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES G. Tenenbaum and Jie Wu, Cours Spécialisés No. 2: "Théorie analytique et probabiliste des nombres", Collection SMF, Ordres moyens, p. 20. LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 Vaclav Kotesovec, Graph - the asymptotic ratio (1000000 terms) FORMULA Asymptotic formula: a(n) = C*n*log(n) + O(n) with C = Product_{p prime} (1 - 1/p)^2*(1 + 2/p). The constant C is A065473. - Amiram Eldar, May 24 2020 a(n) = Sum_{k=1..n} mu(k)^2*d(k), where d is the number of divisors function (A000005). - Ridouane Oudra, Jul 25 2019 More precise asymptotics: Let f(s) = Product_{primes p} (1 - 3/p^(2*s) + 2/p^(3*s)), then a(n) ~ n*(f(1)*(log(n) + 2*gamma - 1) + f'(1)), where f(1) = A065473, f'(1) = f(1) * Sum_{primes p} 6*log(p)/(p^2 + p - 2) = 0.802323384763097462846799913287578352653695442033314074501634920897596526... and gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Aug 20 2021 MAPLE with(numtheory): seq(add(tau(k)*mobius(k)^2, k=1..n), n=1..90); # Ridouane Oudra, Jul 25 2019 MATHEMATICA Accumulate @ Table[MoebiusMu[n]^2 * 2^PrimeNu[n], {n, 1, 66}] (* Amiram Eldar, May 24 2020 *) PROG (Scheme) (define (A069201 n) (if (= 1 n) n (+ (A074823 n) (A069201 (- n 1))))) ;; Antti Karttunen, Jul 23 2017 (PARI) a(n) = sum(k=1, n, moebius(k)^2*2^omega(k)); \\ Michel Marcus, Jul 23 2017 (Magma) [&+[MoebiusMu(k)^2*#Divisors(k):k in [1..n]]: n in [1..66]]; // Marius A. Burtea, Jul 27 2019 CROSSREFS Partial sums of A074823. Cf. A008966, A034444, A065473, A347149. Sequence in context: A227950 A063202 A058020 * A272882 A077800 A073340 Adjacent sequences: A069198 A069199 A069200 * A069202 A069203 A069204 KEYWORD easy,nonn AUTHOR Benoit Cloitre, Apr 14 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 09:19 EST 2022. Contains 358607 sequences. (Running on oeis4.)