login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069163
Number of symmetric primes between n^2 and (n+2)^2. Two primes are termed symmetric in n^2 to (n+2)^2 if there is a k < 2n such that mid-k and mid+k are both prime, where mid =n(n+2).
1
0, 1, 2, 2, 1, 2, 2, 1, 2, 4, 1, 2, 3, 1, 5, 3, 1, 4, 4, 3, 5, 3, 2, 4, 4, 1, 4, 4, 2, 5, 4, 0, 6, 2, 3, 4, 4, 2, 4, 8, 0, 3, 4, 2, 5, 4, 4, 5, 5, 3, 7, 5, 3, 5, 7, 2, 4, 6, 3, 7, 7, 5, 6, 6, 5, 5, 7, 5, 6, 8, 1, 3, 8, 3, 11, 6, 1, 10, 5, 2, 5, 8, 5, 5, 7, 5, 4, 6, 2, 8, 7, 4, 13, 7, 5, 9, 7, 4, 9
OFFSET
1,3
COMMENTS
This relates primes between n^2 and (n+1)^2 to primes between (n+1)^2 and (n+2)^2. It appears that the number of symmetric primes is zero for only n=0,32,41.
EXAMPLE
a(5) = 1 because in the range 25 to 49, the primes 29 and 41 are the only primes symmetric about the number 35.
MATHEMATICA
maxN=100; lst={}; For[n=1, n<maxN, n=n+1, mid=n^2+2n; cnt=0; If[EvenQ[mid], k=1, k=2]; While[k<2n, If[PrimeQ[mid-k]&&PrimeQ[mid+k], cnt++; ]; k=k+2]; AppendTo[lst, cnt] ]; lst
CROSSREFS
Cf. A014085.
Sequence in context: A361870 A124800 A247349 * A025260 A227156 A123369
KEYWORD
easy,nonn
AUTHOR
T. D. Noe, Apr 09 2002
STATUS
approved