|
|
A069059
|
|
Numbers k such that k and sigma(k) are not relatively prime.
|
|
9
|
|
|
6, 10, 12, 14, 15, 18, 20, 22, 24, 26, 28, 30, 33, 34, 38, 40, 42, 44, 45, 46, 48, 51, 52, 54, 56, 58, 60, 62, 66, 68, 69, 70, 72, 74, 76, 78, 80, 82, 84, 86, 87, 88, 90, 91, 92, 94, 95, 96, 99, 102, 104, 105, 106, 108, 110, 112, 114, 116, 117, 118, 120, 122, 123, 124
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Also, numbers n such that the reduced denominator of Sum_{d|n} 1/d (A017666) is less than n. - Ivan Neretin, Aug 30 2015
The asymptotic density of this sequence is 1 (Dressler, 1974; Luca, 2007). - Amiram Eldar, May 23 2022
|
|
LINKS
|
Robert E. Dressler, On a theorem of Niven, Canadian Mathematical Bulletin, Vol. 17, No. 1 (1974), pp. 109-110.
|
|
FORMULA
|
|
|
MAPLE
|
select(n -> igcd(n, numtheory:-sigma(n)) > 1, [$1..1000]); # Robert Israel, Sep 01 2015
|
|
MATHEMATICA
|
Select[Range@125, GCD[#, DivisorSigma[1, #]] > 1 &] (* Ivan Neretin, Aug 30 2015 *)
|
|
PROG
|
(PARI) for(n=1, 160, if(gcd(sigma(n), n)>1, print1(n, ", ")))
(Haskell)
a069059 n = a069059_list !! (n-1)
a069059_list = filter ((> 1) . a009194) [1..]
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|