login
A068983
a(n) = Sum_{k=0..n} (k^k-k!).
0
0, 2, 23, 255, 3260, 49196, 867699, 17604595, 404662204, 10401033404, 295672787215, 9211294233871, 312080173805324, 11423999821072140, 449316582527563515, 18896039733447227131, 846135945932355895308, 40192537618855187742732, 2018612071634068368034711
OFFSET
1,2
COMMENTS
a(n) = number of non-injective functions [k]->[k] for 1<=k<=n.
FORMULA
a(n) = Sum_{k=0..n} (k^k-k!).
a(n) = A062970(n) - A003422(n+1). - Alois P. Heinz, Aug 10 2021
EXAMPLE
a(4) = 255 because (1^1-1!)+(2^2-2!)+(3^3-3!)+(4^4-4!) = 255.
MATHEMATICA
Accumulate[Table[n^n-n!, {n, 20}]] (* Harvey P. Dale, Aug 21 2011 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Darrell Minor, Apr 02 2002
STATUS
approved