login
Numbers having the sum of distinct prime factors less than the sum of exponents in prime factorization, A008472(n) < A001222(n).
6

%I #13 Nov 24 2019 06:45:36

%S 8,16,32,64,81,96,128,144,192,216,243,256,288,324,384,432,486,512,576,

%T 640,648,729,768,864,972,1024,1152,1280,1296,1458,1536,1600,1728,1944,

%U 2048,2187,2304,2560,2592,2916,3072,3200,3456,3584,3888,4000,4096,4374,4608

%N Numbers having the sum of distinct prime factors less than the sum of exponents in prime factorization, A008472(n) < A001222(n).

%H Amiram Eldar, <a href="/A068935/b068935.txt">Table of n, a(n) for n = 1..10000</a>

%e 144 is included because 144 = 2^4 * 3^2 and 2+3 < 4+2.

%t okQ[n_]:=Module[{tfi=Transpose[FactorInteger[n]]},Total[First[tfi]]<Total[Last[tfi]]]

%t Select[Range[2500],okQ] (* _Harvey P. Dale_, Jan 17 2011 *)

%o (PARI) isok(n) = vecsum(factor(n)[,1]) < bigomega(n); \\ _Michel Marcus_, Apr 25 2016

%Y Cf. A068936, A054411, A068937, A068938.

%K nonn

%O 1,1

%A _Reinhard Zumkeller_, Mar 08 2002

%E More terms from _Michel Marcus_, Apr 25 2016