login
A068808
Triangular numbers with strictly increasing sum of digits.
4
1, 3, 6, 28, 66, 78, 378, 496, 1596, 5778, 5995, 8778, 47895, 58996, 196878, 468996, 887778, 1788886, 4896885, 5897895, 13999986, 15997996, 38997696, 88877778, 179977878, 189978778, 398988876, 686999778, 1699998895, 5779898886, 9876799878, 38689969878, 39689699896, 67898888778, 89996788896, 299789989975
OFFSET
1,2
LINKS
EXAMPLE
a(4) = 28 = 7 * (7 + 1) / 2, which is 7th triangular number with sum of digits = 2 + 8 = 10. a(5) = 66 = 11 * (11 + 1) / 2, which is 11th triangular number with sum of digits = 6 + 6 = 12. Since 12 > 10, 28 and 66 are in list. - K. D. Bajpai, Sep 04 2014
MAPLE
dig := X->convert((convert(X, base, 10)), `+`); T := k->k*(k+1)/2; S := k->seq(dig(T(i)), i=1..k-1); seq(`if`(n>1 and dig(T(n))>max(S(n)), T(n), printf("")), n=1..2000);
MATHEMATICA
t = {}; s = 0; Do[If[(x = Total[IntegerDigits[y = n*(n + 1)/2]]) > s, AppendTo[t, y]; s = x], {n, 120000}]; t (* Jayanta Basu, Aug 06 2013 *)
PROG
(PARI)
tri(n)=n*(n+1)/2;
A068808=List; listput(A068808, 1, 1);
y=2; for(k=1, 100000, if(sumdigits(Vec(A068808)[y-1])<sumdigits(tri(k)), listput(A068808, tri(k), y); y++)); A068808 \\ Edward Jiang, Sep 04 2014
CROSSREFS
Sequence in context: A075088 A102428 A128056 * A068133 A370668 A220823
KEYWORD
base,easy,nonn
AUTHOR
Amarnath Murthy, Mar 06 2002
EXTENSIONS
More terms from Francois Jooste (phukraut(AT)hotmail.com), Mar 10 2002
More terms from Sascha Kurz, Mar 27 2002
a(31) to a(33) from K. D. Bajpai, Sep 04 2014
a(34) to a(36) from Robert Israel, Sep 04 2014
STATUS
approved