

A068617


Starting from a(1)=8, each subsequent term is the minimal square obtained by inserting at least one digit in the previous term.


0



8, 81, 841, 38416, 3841600, 384160000, 38416000000, 3841600000000, 384160000000000, 38416000000000000, 3841600000000000000, 384160000000000000000, 38416000000000000000000
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The growing square sequence for 1 and 6, 2 and 5, 4 and 9 in pairs are the same.


LINKS



FORMULA

For n>=4, a(n) = 38416*100^(n4).
a(n) = 100*a(n1) for n > 4.
G.f.: x*(45684*x^3 + 7259*x^2 + 719*x  8)/(100*x  1). (End)


EXAMPLE

a(2)=81 hence a(3) = 841 the smallest square formed from 81.


CROSSREFS



KEYWORD

base,nonn


AUTHOR



EXTENSIONS



STATUS

approved



